000866699 001__ 866699
000866699 005__ 20220930130223.0
000866699 0247_ $$2doi$$a10.2136/vzj2019.05.0044
000866699 0247_ $$2Handle$$a2128/23623
000866699 0247_ $$2altmetric$$aaltmetric:72033338
000866699 0247_ $$2WOS$$aWOS:000498826300001
000866699 037__ $$aFZJ-2019-05774
000866699 082__ $$a550
000866699 1001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b0$$eCorresponding author
000866699 245__ $$aMonitoring Soil Water Content Using Time-Lapse Horizontal Borehole GPR Data at the Field-Plot Scale
000866699 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2019
000866699 3367_ $$2DRIVER$$aarticle
000866699 3367_ $$2DataCite$$aOutput Types/Journal article
000866699 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576569207_618
000866699 3367_ $$2BibTeX$$aARTICLE
000866699 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866699 3367_ $$00$$2EndNote$$aJournal Article
000866699 520__ $$aGround penetrating radar (GPR) has shown a high potential to derive soil water content (SWC) at different scales. In this study, we combined multiple horizontal GPR measurements at different depths to investigate the spatial and temporal variability of the SWC under cropped plots. The SWC data were analyzed for four growing seasons between 2014 and 2017, two soil types (gravelly and clayey–silty), two crops (wheat [Triticum aestivum L.] and maize [Zea mays L.]), and three different water treatments. We acquired more than 150 time-lapse GPR datasets along 6-m-long horizontal crossholes at six depths. The GPR SWC distributions are distinct both horizontally and vertically for both soil types. A clear change in SWC can be observed at both sites between the surface layer (>0.3 m) and subsoil. Alternating patches of higher and lower SWC, probably caused by the soil heterogeneity, were observed along the horizontal SWC profiles. To investigate the changes in SWC with time, GPR and time-domain reflectometry (TDR) data were averaged for each depth and compared with changes in precipitation, treatment, and soil type. The high-temporal-resolution TDR and the large-sampling-volume GPR show similar trends in SWC for both sites, but because of the different sensing volumes, different responses were obtained due to the spatial heterogeneity. A difference in spatial variation of the crosshole GPR SWC data was detected between maize and wheat. The results for this 4-yr period indicate the potential of this novel experimental setup to monitor spatial and temporal SWC changes that can be used to study soil–plant–atmosphere interactions.
000866699 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000866699 588__ $$aDataset connected to CrossRef
000866699 7001_ $$0P:(DE-Juel1)180553$$aLärm, Lena$$b1$$ufzj
000866699 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b2$$ufzj
000866699 7001_ $$0P:(DE-Juel1)156154$$aCai, Gaochao$$b3
000866699 7001_ $$0P:(DE-Juel1)168106$$aMorandage, Shehan$$b4$$ufzj
000866699 7001_ $$0P:(DE-Juel1)169311$$aZörner, Miriam$$b5
000866699 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6$$ufzj
000866699 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b7$$ufzj
000866699 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2019.05.0044$$gVol. 18, no. 1, p. 0 -$$n1$$p $$tVadose zone journal$$v18$$x1539-1663$$y2019
000866699 8564_ $$uhttps://juser.fz-juelich.de/record/866699/files/Invoice%20%23763265.pdf
000866699 8564_ $$uhttps://juser.fz-juelich.de/record/866699/files/Invoice%20%23763265.pdf?subformat=pdfa$$xpdfa
000866699 8564_ $$uhttps://juser.fz-juelich.de/record/866699/files/vzj-18-1-190044.pdf$$yOpenAccess
000866699 8564_ $$uhttps://juser.fz-juelich.de/record/866699/files/vzj-18-1-190044.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866699 8767_ $$8763265$$92019-11-13$$d2019-11-21$$eAPC$$jZahlung erfolgt$$pman#vzj-2019-05-0044$$z1750 USD
000866699 8767_ $$8763265$$92019-11-13$$d2019-11-21$$ePage charges$$jZahlung erfolgt$$pman#vzj-2019-05-0044$$z2600 USD
000866699 909CO $$ooai:juser.fz-juelich.de:866699$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000866699 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich$$b0$$kFZJ
000866699 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180553$$aForschungszentrum Jülich$$b1$$kFZJ
000866699 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b2$$kFZJ
000866699 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168106$$aForschungszentrum Jülich$$b4$$kFZJ
000866699 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000866699 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich$$b7$$kFZJ
000866699 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000866699 9141_ $$y2019
000866699 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866699 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000866699 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2017
000866699 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866699 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866699 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866699 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866699 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000866699 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866699 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866699 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000866699 980__ $$ajournal
000866699 980__ $$aVDB
000866699 980__ $$aUNRESTRICTED
000866699 980__ $$aI:(DE-Juel1)IBG-3-20101118
000866699 980__ $$aAPC
000866699 9801_ $$aAPC
000866699 9801_ $$aFullTexts