001     866699
005     20220930130223.0
024 7 _ |a 10.2136/vzj2019.05.0044
|2 doi
024 7 _ |a 2128/23623
|2 Handle
024 7 _ |a altmetric:72033338
|2 altmetric
024 7 _ |a WOS:000498826300001
|2 WOS
037 _ _ |a FZJ-2019-05774
082 _ _ |a 550
100 1 _ |a Klotzsche, Anja
|0 P:(DE-Juel1)129483
|b 0
|e Corresponding author
245 _ _ |a Monitoring Soil Water Content Using Time-Lapse Horizontal Borehole GPR Data at the Field-Plot Scale
260 _ _ |a Alexandria, Va.
|c 2019
|b GeoScienceWorld
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1576569207_618
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ground penetrating radar (GPR) has shown a high potential to derive soil water content (SWC) at different scales. In this study, we combined multiple horizontal GPR measurements at different depths to investigate the spatial and temporal variability of the SWC under cropped plots. The SWC data were analyzed for four growing seasons between 2014 and 2017, two soil types (gravelly and clayey–silty), two crops (wheat [Triticum aestivum L.] and maize [Zea mays L.]), and three different water treatments. We acquired more than 150 time-lapse GPR datasets along 6-m-long horizontal crossholes at six depths. The GPR SWC distributions are distinct both horizontally and vertically for both soil types. A clear change in SWC can be observed at both sites between the surface layer (>0.3 m) and subsoil. Alternating patches of higher and lower SWC, probably caused by the soil heterogeneity, were observed along the horizontal SWC profiles. To investigate the changes in SWC with time, GPR and time-domain reflectometry (TDR) data were averaged for each depth and compared with changes in precipitation, treatment, and soil type. The high-temporal-resolution TDR and the large-sampling-volume GPR show similar trends in SWC for both sites, but because of the different sensing volumes, different responses were obtained due to the spatial heterogeneity. A difference in spatial variation of the crosshole GPR SWC data was detected between maize and wheat. The results for this 4-yr period indicate the potential of this novel experimental setup to monitor spatial and temporal SWC changes that can be used to study soil–plant–atmosphere interactions.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lärm, Lena
|0 P:(DE-Juel1)180553
|b 1
|u fzj
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 2
|u fzj
700 1 _ |a Cai, Gaochao
|0 P:(DE-Juel1)156154
|b 3
700 1 _ |a Morandage, Shehan
|0 P:(DE-Juel1)168106
|b 4
|u fzj
700 1 _ |a Zörner, Miriam
|0 P:(DE-Juel1)169311
|b 5
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 6
|u fzj
700 1 _ |a van der Kruk, Jan
|0 P:(DE-Juel1)129561
|b 7
|u fzj
773 _ _ |a 10.2136/vzj2019.05.0044
|g Vol. 18, no. 1, p. 0 -
|0 PERI:(DE-600)2088189-7
|n 1
|p
|t Vadose zone journal
|v 18
|y 2019
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/866699/files/Invoice%20%23763265.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/866699/files/Invoice%20%23763265.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866699/files/vzj-18-1-190044.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866699/files/vzj-18-1-190044.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866699
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180553
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)168106
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129561
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21