001     866707
005     20210130003606.0
024 7 _ |a 10.1016/j.jbiotec.2019.10.022
|2 doi
024 7 _ |a 0168-1656
|2 ISSN
024 7 _ |a 1873-4863
|2 ISSN
024 7 _ |a 2128/23497
|2 Handle
024 7 _ |a pmid:31715206
|2 pmid
024 7 _ |a WOS:000502527100017
|2 WOS
037 _ _ |a FZJ-2019-05777
082 _ _ |a 540
100 1 _ |a Stoffels, Peter
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Complementing the intrinsic repertoire of Ustilago maydis for degradation of the pectin backbone polygalacturonic acid
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1574424275_14301
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Biotechnologie 1
520 _ _ |a Microbial valorization of plant biomass is a key target in bioeconomy. A promising candidate for consolidated bioprocessing is the dimorphic fungus Ustilago maydis. It harbors hydrolytic enzymes to degrade biomass components and naturally produces valuable secondary metabolites like itaconic acid, malic acid or glycolipids. However, hydrolytic enzymes are mainly expressed in the hyphal form. This type of morphology should be prevented in industrial fermentation processes. Genetic activation of these enzymes can enable growth on cognate substrates also in the yeast form. Here, strains were engineered for growth on polygalacturonic acid as major component of pectin. Besides activation of intrinsic enzymes, supplementation with heterologous genes for potent enzymes was tested. The presence of an unconventional secretion pathway allowed exploiting fungal and bacterial enzymes. Growth of the engineered strains was evaluated by a recently developed method for online determination of residual substrates based on the respiration activity. This enabled the quantification of the overall consumed substrate as a key asset for the assessment of the enzyme degradation potential even on polymeric substrates. Co-fermentation of endo- and exo-polygalacturonase overexpression strains resulted in efficient growth on polygalacturonic acid. In the future, the approach will be extended to establish efficient degradation and valorization of pectin. Previous article in issue
536 _ _ |a 581 - Biotechnology (POF3-581)
|0 G:(DE-HGF)POF3-581
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Müller, Markus Jan
|0 P:(DE-Juel1)179396
|b 1
700 1 _ |a Stachurski, Sarah
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Terfrüchte, Marius
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schröder, Sebastian
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ihling, Nina
|0 0000-0002-5242-3641
|b 5
700 1 _ |a Wierckx, Nick
|0 P:(DE-Juel1)176653
|b 6
700 1 _ |a Feldbrügge, Michael
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schipper, Kerstin
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Büchs, Jochen
|0 0000-0002-2012-3476
|b 9
|e Corresponding author
773 _ _ |a 10.1016/j.jbiotec.2019.10.022
|g Vol. 307, p. 148 - 163
|0 PERI:(DE-600)2016476-2
|p 148 - 163
|t Journal of biotechnology
|v 307
|y 2020
|x 0168-1656
856 4 _ |u https://juser.fz-juelich.de/record/866707/files/Stoffels%20et%20al%202019%20J%20Biotec.%20307%20148-163.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/866707/files/Stoffels%20et%20al%202019%20J%20Biotec.%20307%20148-163.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866707/files/Stoffels%20and%20M%C3%BCller%20et%20al_2019_JBIotechnol.docx.pdf
909 C O |o oai:juser.fz-juelich.de:866707
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)179396
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)176653
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOTECHNOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21