000866713 001__ 866713
000866713 005__ 20210131031034.0
000866713 0247_ $$2doi$$a10.1063/1.5124967
000866713 0247_ $$2ISSN$$a0003-6951
000866713 0247_ $$2ISSN$$a1077-3118
000866713 0247_ $$2ISSN$$a1520-8842
000866713 0247_ $$2Handle$$a2128/23452
000866713 0247_ $$2WOS$$aWOS:000504303900018
000866713 0247_ $$2altmetric$$aaltmetric:64923058
000866713 037__ $$aFZJ-2019-05783
000866713 082__ $$a530
000866713 1001_ $$0P:(DE-HGF)0$$aHenriques, Fabio$$b0
000866713 245__ $$aPhonon traps reduce the quasiparticle density in superconducting circuits
000866713 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2019
000866713 3367_ $$2DRIVER$$aarticle
000866713 3367_ $$2DataCite$$aOutput Types/Journal article
000866713 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574424573_12583
000866713 3367_ $$2BibTeX$$aARTICLE
000866713 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866713 3367_ $$00$$2EndNote$$aJournal Article
000866713 520__ $$aOut of equilibrium quasiparticles (QPs) are one of the main sources of decoherence in superconducting quantum circuits and one that is particularly detrimental in devices with high kinetic inductance, such as high impedance resonators, qubits, and detectors. Despite significant progress in the understanding of QP dynamics, pinpointing their origin and decreasing their density remain outstanding tasks. The cyclic process of recombination and generation of QPs implies the exchange of phonons between the superconducting thin film and the underlying substrate. Reducing the number of substrate phonons with frequencies exceeding the spectral gap of the superconductor should result in a reduction of QPs. Indeed, we demonstrate that surrounding high impedance resonators made of granular aluminum (grAl) with lower gapped thin film aluminum islands increases the internal quality factors of the resonators in the single photon regime, suppresses the noise, and reduces the rate of observed QP bursts. The aluminum islands are positioned far enough from the resonators to be electromagnetically decoupled, thus not changing the resonator frequency nor the loading. We therefore attribute the improvements observed in grAl resonators to phonon trapping at frequencies close to the spectral gap of aluminum, well below the grAl gap.
000866713 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000866713 588__ $$aDataset connected to CrossRef
000866713 7001_ $$00000-0002-3325-8732$$aValenti, Francesco$$b1
000866713 7001_ $$0P:(DE-HGF)0$$aCharpentier, Thibault$$b2
000866713 7001_ $$0P:(DE-HGF)0$$aLagoin, Marc$$b3
000866713 7001_ $$00000-0001-7470-157X$$aGouriou, Clement$$b4
000866713 7001_ $$00000-0002-9043-4691$$aMartínez, Maria$$b5
000866713 7001_ $$00000-0001-5410-118X$$aCardani, Laura$$b6
000866713 7001_ $$00000-0002-8945-1128$$aVignati, Marco$$b7
000866713 7001_ $$00000-0002-4341-5228$$aGrünhaupt, Lukas$$b8
000866713 7001_ $$0P:(DE-HGF)0$$aGusenkova, Daria$$b9
000866713 7001_ $$0P:(DE-HGF)0$$aFerrero, Julian$$b10
000866713 7001_ $$00000-0002-7424-7634$$aSkacel, Sebastian T.$$b11
000866713 7001_ $$00000-0003-4602-5257$$aWernsdorfer, Wolfgang$$b12
000866713 7001_ $$0P:(DE-HGF)0$$aUstinov, Alexey V.$$b13
000866713 7001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b14
000866713 7001_ $$0P:(DE-HGF)0$$aSander, Oliver$$b15
000866713 7001_ $$00000-0002-6776-9792$$aPop, Ioan M.$$b16$$eCorresponding author
000866713 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.5124967$$gVol. 115, no. 21, p. 212601 -$$n21$$p212601 -$$tApplied physics letters$$v115$$x1077-3118$$y2019
000866713 8564_ $$uhttps://juser.fz-juelich.de/record/866713/files/1.5124967.pdf$$yPublished on 2019-11-21. Available in OpenAccess from 2020-11-21.
000866713 8564_ $$uhttps://juser.fz-juelich.de/record/866713/files/1.5124967.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-11-21. Available in OpenAccess from 2020-11-21.
000866713 909CO $$ooai:juser.fz-juelich.de:866713$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b14$$kFZJ
000866713 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000866713 9141_ $$y2019
000866713 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866713 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866713 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866713 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2017
000866713 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866713 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866713 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866713 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866713 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866713 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866713 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000866713 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866713 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000866713 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866713 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866713 920__ $$lyes
000866713 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000866713 980__ $$ajournal
000866713 980__ $$aVDB
000866713 980__ $$aUNRESTRICTED
000866713 980__ $$aI:(DE-Juel1)PGI-11-20170113
000866713 9801_ $$aFullTexts