001     866713
005     20210131031034.0
024 7 _ |a 10.1063/1.5124967
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a 1520-8842
|2 ISSN
024 7 _ |a 2128/23452
|2 Handle
024 7 _ |a WOS:000504303900018
|2 WOS
024 7 _ |a altmetric:64923058
|2 altmetric
037 _ _ |a FZJ-2019-05783
082 _ _ |a 530
100 1 _ |a Henriques, Fabio
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Phonon traps reduce the quasiparticle density in superconducting circuits
260 _ _ |a Melville, NY
|c 2019
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1574424573_12583
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Out of equilibrium quasiparticles (QPs) are one of the main sources of decoherence in superconducting quantum circuits and one that is particularly detrimental in devices with high kinetic inductance, such as high impedance resonators, qubits, and detectors. Despite significant progress in the understanding of QP dynamics, pinpointing their origin and decreasing their density remain outstanding tasks. The cyclic process of recombination and generation of QPs implies the exchange of phonons between the superconducting thin film and the underlying substrate. Reducing the number of substrate phonons with frequencies exceeding the spectral gap of the superconductor should result in a reduction of QPs. Indeed, we demonstrate that surrounding high impedance resonators made of granular aluminum (grAl) with lower gapped thin film aluminum islands increases the internal quality factors of the resonators in the single photon regime, suppresses the noise, and reduces the rate of observed QP bursts. The aluminum islands are positioned far enough from the resonators to be electromagnetically decoupled, thus not changing the resonator frequency nor the loading. We therefore attribute the improvements observed in grAl resonators to phonon trapping at frequencies close to the spectral gap of aluminum, well below the grAl gap.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Valenti, Francesco
|0 0000-0002-3325-8732
|b 1
700 1 _ |a Charpentier, Thibault
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lagoin, Marc
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gouriou, Clement
|0 0000-0001-7470-157X
|b 4
700 1 _ |a Martínez, Maria
|0 0000-0002-9043-4691
|b 5
700 1 _ |a Cardani, Laura
|0 0000-0001-5410-118X
|b 6
700 1 _ |a Vignati, Marco
|0 0000-0002-8945-1128
|b 7
700 1 _ |a Grünhaupt, Lukas
|0 0000-0002-4341-5228
|b 8
700 1 _ |a Gusenkova, Daria
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ferrero, Julian
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Skacel, Sebastian T.
|0 0000-0002-7424-7634
|b 11
700 1 _ |a Wernsdorfer, Wolfgang
|0 0000-0003-4602-5257
|b 12
700 1 _ |a Ustinov, Alexey V.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Catelani, Gianluigi
|0 P:(DE-Juel1)151130
|b 14
700 1 _ |a Sander, Oliver
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Pop, Ioan M.
|0 0000-0002-6776-9792
|b 16
|e Corresponding author
773 _ _ |a 10.1063/1.5124967
|g Vol. 115, no. 21, p. 212601 -
|0 PERI:(DE-600)1469436-0
|n 21
|p 212601 -
|t Applied physics letters
|v 115
|y 2019
|x 1077-3118
856 4 _ |y Published on 2019-11-21. Available in OpenAccess from 2020-11-21.
|u https://juser.fz-juelich.de/record/866713/files/1.5124967.pdf
856 4 _ |y Published on 2019-11-21. Available in OpenAccess from 2020-11-21.
|x pdfa
|u https://juser.fz-juelich.de/record/866713/files/1.5124967.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866713
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)151130
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21