000866714 001__ 866714
000866714 005__ 20220930130223.0
000866714 0247_ $$2doi$$a10.1007/s10295-019-02243-w
000866714 0247_ $$2ISSN$$a0169-4146
000866714 0247_ $$2ISSN$$a1367-5435
000866714 0247_ $$2ISSN$$a1476-5535
000866714 0247_ $$2Handle$$a2128/24702
000866714 0247_ $$2pmid$$apmid:31673873
000866714 0247_ $$2WOS$$aWOS:000493750500001
000866714 037__ $$aFZJ-2019-05784
000866714 082__ $$a570
000866714 1001_ $$0P:(DE-Juel1)161365$$aMorschett, Holger$$b0
000866714 245__ $$aParallelized microscale fed-batch cultivation in online-monitored microtiter plates: implications of media composition and feed strategies for process design and performance
000866714 260__ $$aBerlin$$bSpringer67420$$c2020
000866714 3367_ $$2DRIVER$$aarticle
000866714 3367_ $$2DataCite$$aOutput Types/Journal article
000866714 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1587554936_19330
000866714 3367_ $$2BibTeX$$aARTICLE
000866714 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866714 3367_ $$00$$2EndNote$$aJournal Article
000866714 520__ $$aLimited throughput represents a substantial drawback during bioprocess development. In recent years, several commercial microbioreactor systems have emerged featuring parallelized experimentation with optical monitoring. However, many devices remain limited to batch mode and do not represent the fed-batch strategy typically applied on an industrial scale. A workflow for 32-fold parallelized microscale cultivation of protein secreting Corynebacterium glutamicum in microtiter plates incorporating online monitoring, pH control and feeding was developed and validated. Critical interference of the essential media component protocatechuic acid with pH measurement was revealed, but was effectively resolved by 80% concentration reduction without affecting biological performance. Microfluidic pH control and feeding (pulsed, constant and exponential) were successfully implemented: Whereas pH control improved performance only slightly, feeding revealed a much higher optimization potential. Exponential feeding with µ = 0.1 h−1 resulted in the highest product titers. In contrast, other performance indicators such as biomass-specific or volumetric productivity resulted in different optimal feeding regimes.
000866714 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000866714 588__ $$aDataset connected to CrossRef
000866714 7001_ $$0P:(DE-Juel1)171232$$aJansen, Roman$$b1
000866714 7001_ $$0P:(DE-Juel1)174473$$aNeuendorf, Christian$$b2
000866714 7001_ $$0P:(DE-Juel1)129045$$aMoch, Matthias$$b3
000866714 7001_ $$0P:(DE-Juel1)129076$$aWiechert, Wolfgang$$b4
000866714 7001_ $$0P:(DE-Juel1)129053$$aOldiges, Marco$$b5$$eCorresponding author
000866714 773__ $$0PERI:(DE-600)1362291-2$$a10.1007/s10295-019-02243-w$$p35-47$$tJournal of industrial microbiology & biotechnology$$v47$$x1476-5535$$y2020
000866714 8564_ $$uhttps://juser.fz-juelich.de/record/866714/files/Invoice%202936144964.pdf
000866714 8564_ $$uhttps://juser.fz-juelich.de/record/866714/files/Invoice%202936144964.pdf?subformat=pdfa$$xpdfa
000866714 8564_ $$uhttps://juser.fz-juelich.de/record/866714/files/Morschett2020_Article_ParallelizedMicroscaleFed-batc.pdf$$yOpenAccess
000866714 8564_ $$uhttps://juser.fz-juelich.de/record/866714/files/Morschett2020_Article_ParallelizedMicroscaleFed-batc.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866714 8767_ $$82936144964$$92019-12-12$$d2019-12-17$$eHybrid-OA$$jZahlung erfolgt
000866714 909CO $$ooai:juser.fz-juelich.de:866714$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000866714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161365$$aForschungszentrum Jülich$$b0$$kFZJ
000866714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171232$$aForschungszentrum Jülich$$b1$$kFZJ
000866714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129045$$aForschungszentrum Jülich$$b3$$kFZJ
000866714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129076$$aForschungszentrum Jülich$$b4$$kFZJ
000866714 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129053$$aForschungszentrum Jülich$$b5$$kFZJ
000866714 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000866714 9141_ $$y2020
000866714 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866714 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000866714 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866714 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866714 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ IND MICROBIOL BIOT : 2015
000866714 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866714 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866714 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866714 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866714 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866714 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866714 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000866714 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866714 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866714 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866714 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000866714 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000866714 980__ $$ajournal
000866714 980__ $$aVDB
000866714 980__ $$aUNRESTRICTED
000866714 980__ $$aI:(DE-Juel1)IBG-1-20101118
000866714 980__ $$aAPC
000866714 9801_ $$aAPC
000866714 9801_ $$aFullTexts