001     866714
005     20220930130223.0
024 7 _ |a 10.1007/s10295-019-02243-w
|2 doi
024 7 _ |a 0169-4146
|2 ISSN
024 7 _ |a 1367-5435
|2 ISSN
024 7 _ |a 1476-5535
|2 ISSN
024 7 _ |a 2128/24702
|2 Handle
024 7 _ |a pmid:31673873
|2 pmid
024 7 _ |a WOS:000493750500001
|2 WOS
037 _ _ |a FZJ-2019-05784
082 _ _ |a 570
100 1 _ |a Morschett, Holger
|0 P:(DE-Juel1)161365
|b 0
245 _ _ |a Parallelized microscale fed-batch cultivation in online-monitored microtiter plates: implications of media composition and feed strategies for process design and performance
260 _ _ |a Berlin
|c 2020
|b Springer67420
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1587554936_19330
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Limited throughput represents a substantial drawback during bioprocess development. In recent years, several commercial microbioreactor systems have emerged featuring parallelized experimentation with optical monitoring. However, many devices remain limited to batch mode and do not represent the fed-batch strategy typically applied on an industrial scale. A workflow for 32-fold parallelized microscale cultivation of protein secreting Corynebacterium glutamicum in microtiter plates incorporating online monitoring, pH control and feeding was developed and validated. Critical interference of the essential media component protocatechuic acid with pH measurement was revealed, but was effectively resolved by 80% concentration reduction without affecting biological performance. Microfluidic pH control and feeding (pulsed, constant and exponential) were successfully implemented: Whereas pH control improved performance only slightly, feeding revealed a much higher optimization potential. Exponential feeding with µ = 0.1 h−1 resulted in the highest product titers. In contrast, other performance indicators such as biomass-specific or volumetric productivity resulted in different optimal feeding regimes.
536 _ _ |a 581 - Biotechnology (POF3-581)
|0 G:(DE-HGF)POF3-581
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jansen, Roman
|0 P:(DE-Juel1)171232
|b 1
700 1 _ |a Neuendorf, Christian
|0 P:(DE-Juel1)174473
|b 2
700 1 _ |a Moch, Matthias
|0 P:(DE-Juel1)129045
|b 3
700 1 _ |a Wiechert, Wolfgang
|0 P:(DE-Juel1)129076
|b 4
700 1 _ |a Oldiges, Marco
|0 P:(DE-Juel1)129053
|b 5
|e Corresponding author
773 _ _ |a 10.1007/s10295-019-02243-w
|0 PERI:(DE-600)1362291-2
|p 35-47
|t Journal of industrial microbiology & biotechnology
|v 47
|y 2020
|x 1476-5535
856 4 _ |u https://juser.fz-juelich.de/record/866714/files/Invoice%202936144964.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/866714/files/Invoice%202936144964.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866714/files/Morschett2020_Article_ParallelizedMicroscaleFed-batc.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866714/files/Morschett2020_Article_ParallelizedMicroscaleFed-batc.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866714
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161365
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171232
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129045
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129053
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J IND MICROBIOL BIOT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21