000866754 001__ 866754
000866754 005__ 20240709112119.0
000866754 0247_ $$2doi$$a10.1016/j.ijhydene.2020.02.107
000866754 0247_ $$2ISSN$$a0360-3199
000866754 0247_ $$2ISSN$$a1879-3487
000866754 0247_ $$2Handle$$a2128/26909
000866754 0247_ $$2WOS$$aWOS:000607531800016
000866754 037__ $$aFZJ-2019-05823
000866754 082__ $$a620
000866754 1001_ $$0P:(DE-HGF)0$$aKaraoglan, Mustafa Umut$$b0$$eCorresponding author
000866754 245__ $$aComparison of the Single-Cell Testing, Short-Stack Testing and Mathematical Modeling Methods for a Direct Methanol Fuel Cell
000866754 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000866754 3367_ $$2DRIVER$$aarticle
000866754 3367_ $$2DataCite$$aOutput Types/Journal article
000866754 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670592938_30547
000866754 3367_ $$2BibTeX$$aARTICLE
000866754 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866754 3367_ $$00$$2EndNote$$aJournal Article
000866754 520__ $$aIn this paper, a comparison between direct methanol fuel cell (DMFC) measurements performed on a single cell and a short-stack, and the results of a mathematical model for a DMFC, is presented. The testing of a short-stack, which consists of 5 cells with an active area of 315 cm2, was performed at various current densities, permeation current densities, and cathode flow rates (CFR) in order to determine the voltage outputs of each cell. Methanol concentration and stack temperature results obtained from short-stack testing were then integrated into the single cell test and single cell mathematical model as the input parameters. For the mathematical modelling, transport equations originating from methanol, water, and oxygen were coupled with the electrochemical relations. Therefore, a comparison between these three methods is made in order to gain a deeper understanding of the effects of the operating parameters on DMFC performance. This study showed that the model could describe experimental results well when lower methanol concentrations (under 1.2 M) and temperature (under 60 °C) values are used as input parameters. The results also show very good agreement at lower methanol permeation rates and therefore lower temperatures. It is found that the voltage output for a given current density is higher for the theoretical model than that of the experimental studies; and the differences in the results can be up to 0.04 V for a cell.    Previous article in issue
000866754 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000866754 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000866754 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x2
000866754 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x3
000866754 588__ $$aDataset connected to CrossRef
000866754 7001_ $$0P:(DE-HGF)0$$aCoplan, Can Ozgur$$b1
000866754 7001_ $$0P:(DE-Juel1)129851$$aGlüsen, Andreas$$b2
000866754 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b3
000866754 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4
000866754 7001_ $$0P:(DE-HGF)0$$aKuralay, Nusret Sefa$$b5
000866754 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2020.02.107$$gp. S0360319920306728$$n6$$p4844-4856$$tInternational journal of hydrogen energy$$v46$$x0360-3199$$y2021
000866754 8564_ $$uhttps://juser.fz-juelich.de/record/866754/files/Karaoglan%20et%20al_revised_version%20submitted.pdf$$yPublished on 2020-03-27. Available in OpenAccess from 2021-03-27.
000866754 909CO $$ooai:juser.fz-juelich.de:866754$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129851$$aForschungszentrum Jülich$$b2$$kFZJ
000866754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b3$$kFZJ
000866754 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000866754 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b4$$kRWTH
000866754 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000866754 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000866754 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
000866754 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x2
000866754 9141_ $$y2021
000866754 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866754 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866754 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866754 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000866754 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866754 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2017
000866754 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866754 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866754 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866754 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866754 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866754 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866754 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866754 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866754 920__ $$lyes
000866754 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000866754 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000866754 9801_ $$aFullTexts
000866754 980__ $$ajournal
000866754 980__ $$aVDB
000866754 980__ $$aI:(DE-Juel1)IEK-14-20191129
000866754 980__ $$aI:(DE-Juel1)IEK-3-20101013
000866754 980__ $$aUNRESTRICTED
000866754 981__ $$aI:(DE-Juel1)IET-4-20191129
000866754 981__ $$aI:(DE-Juel1)ICE-2-20101013
000866754 981__ $$aI:(DE-Juel1)IET-4-20191129