Home > Publications database > Comparison of the Single-Cell Testing, Short-Stack Testing and Mathematical Modeling Methods for a Direct Methanol Fuel Cell > print |
001 | 866754 | ||
005 | 20240709112119.0 | ||
024 | 7 | _ | |a 10.1016/j.ijhydene.2020.02.107 |2 doi |
024 | 7 | _ | |a 0360-3199 |2 ISSN |
024 | 7 | _ | |a 1879-3487 |2 ISSN |
024 | 7 | _ | |a 2128/26909 |2 Handle |
024 | 7 | _ | |a WOS:000607531800016 |2 WOS |
037 | _ | _ | |a FZJ-2019-05823 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Karaoglan, Mustafa Umut |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Comparison of the Single-Cell Testing, Short-Stack Testing and Mathematical Modeling Methods for a Direct Methanol Fuel Cell |
260 | _ | _ | |a New York, NY [u.a.] |c 2021 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1670592938_30547 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In this paper, a comparison between direct methanol fuel cell (DMFC) measurements performed on a single cell and a short-stack, and the results of a mathematical model for a DMFC, is presented. The testing of a short-stack, which consists of 5 cells with an active area of 315 cm2, was performed at various current densities, permeation current densities, and cathode flow rates (CFR) in order to determine the voltage outputs of each cell. Methanol concentration and stack temperature results obtained from short-stack testing were then integrated into the single cell test and single cell mathematical model as the input parameters. For the mathematical modelling, transport equations originating from methanol, water, and oxygen were coupled with the electrochemical relations. Therefore, a comparison between these three methods is made in order to gain a deeper understanding of the effects of the operating parameters on DMFC performance. This study showed that the model could describe experimental results well when lower methanol concentrations (under 1.2 M) and temperature (under 60 °C) values are used as input parameters. The results also show very good agreement at lower methanol permeation rates and therefore lower temperatures. It is found that the voltage output for a given current density is higher for the theoretical model than that of the experimental studies; and the differences in the results can be up to 0.04 V for a cell. Previous article in issue |
536 | _ | _ | |a 135 - Fuel Cells (POF3-135) |0 G:(DE-HGF)POF3-135 |c POF3-135 |f POF III |x 0 |
536 | _ | _ | |a 1231 - Electrochemistry for Hydrogen (POF4-123) |0 G:(DE-HGF)POF4-1231 |c POF4-123 |f POF IV |x 1 |
536 | _ | _ | |a 1111 - Effective System Transformation Pathways (POF4-111) |0 G:(DE-HGF)POF4-1111 |c POF4-111 |f POF IV |x 2 |
536 | _ | _ | |a 1112 - Societally Feasible Transformation Pathways (POF4-111) |0 G:(DE-HGF)POF4-1112 |c POF4-111 |f POF IV |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Coplan, Can Ozgur |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Glüsen, Andreas |0 P:(DE-Juel1)129851 |b 2 |
700 | 1 | _ | |a Müller, Martin |0 P:(DE-Juel1)129892 |b 3 |
700 | 1 | _ | |a Stolten, Detlef |0 P:(DE-Juel1)129928 |b 4 |
700 | 1 | _ | |a Kuralay, Nusret Sefa |0 P:(DE-HGF)0 |b 5 |
773 | _ | _ | |a 10.1016/j.ijhydene.2020.02.107 |g p. S0360319920306728 |0 PERI:(DE-600)1484487-4 |n 6 |p 4844-4856 |t International journal of hydrogen energy |v 46 |y 2021 |x 0360-3199 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/866754/files/Karaoglan%20et%20al_revised_version%20submitted.pdf |y Published on 2020-03-27. Available in OpenAccess from 2021-03-27. |
909 | C | O | |o oai:juser.fz-juelich.de:866754 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129851 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129892 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129928 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 4 |6 P:(DE-Juel1)129928 |
913 | 0 | _ | |a DE-HGF |b Energie |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-135 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Fuel Cells |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-123 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Chemische Energieträger |9 G:(DE-HGF)POF4-1231 |x 0 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Energiesystemdesign (ESD) |1 G:(DE-HGF)POF4-110 |0 G:(DE-HGF)POF4-111 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Energiesystemtransformation |9 G:(DE-HGF)POF4-1111 |x 1 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Energiesystemdesign (ESD) |1 G:(DE-HGF)POF4-110 |0 G:(DE-HGF)POF4-111 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Energiesystemtransformation |9 G:(DE-HGF)POF4-1112 |x 2 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J HYDROGEN ENERG : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-14-20191129 |k IEK-14 |l Elektrochemische Verfahrenstechnik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-3-20101013 |k IEK-3 |l Technoökonomische Systemanalyse |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-14-20191129 |
980 | _ | _ | |a I:(DE-Juel1)IEK-3-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IET-4-20191129 |
981 | _ | _ | |a I:(DE-Juel1)ICE-2-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IET-4-20191129 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|