001     866760
005     20241127124644.0
024 7 _ |a 10.1016/j.scitotenv.2020.138583
|2 doi
024 7 _ |a 0048-9697
|2 ISSN
024 7 _ |a 1879-1026
|2 ISSN
024 7 _ |a 2128/26890
|2 Handle
024 7 _ |a 32330716
|2 pmid
024 7 _ |a WOS:000537410700011
|2 WOS
037 _ _ |a FZJ-2019-05829
082 _ _ |a 610
100 1 _ |a Breuer, Janos
|0 P:(DE-Juel1)172087
|b 0
|e Corresponding author
245 _ _ |a The impact of diesel vehicles on NOx and PM10 emissions from road transport in urban morphological zones: A case study in North Rhine-Westphalia, Germany
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611252313_3575
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Harmful emissions like nitrogen oxide and particulate matter are one of the big challenges facing modern society. These emissions are especially apparent in agglomerations. Possible solutions to overcome this challenge within the framework of the transformation of the transport sector are the change of the transport vehicles of freight and passenger transport or changing the fuel of the vehicles. Determining the viability of both approaches requires analyses to determine which vehicles are the main polluters in urban areas. This study outlines a bottom-up approach for the calculation of road transport emissions on street level in the representative model region of North Rhine-Westphalia in Germany, considering eight different vehicle classes as well as diesel and gasoline as fuel. Part of the approach is the development of a street-section traffic volume map considering all streets in the model region using a developed multivariate linear regression model for Germany and existing traffic counts. Using the approach developed here, the urban areas of Herne, Oberhausen and Bochum were identified as hotspots with the highest specific nitrogen oxide emissions, while the urban areas of Herne, Oberhausen and Gelsenkirchen were identified as hotspots with the highest specific particulate matter emissions. A detailed investigation of Oberhausen as a representative emission hotspot showed that 91% of road transport nitrogen oxide emissions are produced by vehicles that use diesel fuel and 9% from vehicles with gasoline fuel, while gasoline vehicles account for 43% of the total distance driven and diesel vehicles for 57%. With respect to particulate matter emissions in the urban area of Oberhausen, 29% are produced by gasoline vehicles and 71% by diesel vehicles. However, only 22% of particulate matter emissions are exhaust emissions, while 78% are produced due to the abrasion of tires, brakes and the road.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Samsun, Remzi Can
|0 P:(DE-Juel1)207065
|b 1
700 1 _ |a Peters, Ralf
|0 P:(DE-Juel1)129902
|b 2
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 3
773 _ _ |a 10.1016/j.scitotenv.2020.138583
|g Vol. 727, p. 138583 -
|0 PERI:(DE-600)1498726-0
|p 138583 -
|t The science of the total environment
|v 727
|y 2020
|x 0048-9697
856 4 _ |u https://juser.fz-juelich.de/record/866760/files/Breuer_Janos.pdf
|y Published on 2020-04-12. Available in OpenAccess from 2022-04-12.
909 C O |o oai:juser.fz-juelich.de:866760
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172087
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)172087
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)207065
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Fuel Cells
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-04
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI TOTAL ENVIRON : 2018
|d 2020-09-04
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI TOTAL ENVIRON : 2018
|d 2020-09-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-04
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-09-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
981 _ _ |a I:(DE-Juel1)IET-4-20191129
981 _ _ |a I:(DE-Juel1)ICE-2-20101013
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21