000866776 001__ 866776
000866776 005__ 20210130003623.0
000866776 0247_ $$2doi$$a10.1021/acs.nanolett.9b03507
000866776 0247_ $$2ISSN$$a1530-6984
000866776 0247_ $$2ISSN$$a1530-6992
000866776 0247_ $$2pmid$$apmid:31613114
000866776 0247_ $$2WOS$$aWOS:000497259300072
000866776 037__ $$aFZJ-2019-05842
000866776 082__ $$a660
000866776 1001_ $$0P:(DE-HGF)0$$aNickel, Anne C.$$b0
000866776 245__ $$aAnisotropic Hollow Microgels That Can Adapt Their Size, Shape, and Softness
000866776 260__ $$aWashington, DC$$bACS Publ.$$c2019
000866776 3367_ $$2DRIVER$$aarticle
000866776 3367_ $$2DataCite$$aOutput Types/Journal article
000866776 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575633478_300
000866776 3367_ $$2BibTeX$$aARTICLE
000866776 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866776 3367_ $$00$$2EndNote$$aJournal Article
000866776 520__ $$aThe development of soft anisotropic building blocks is of great interest for various applications in soft matter. Furthermore, such systems would be important model systems for ordering phenomena in fundamental soft matter science. In this work, we address the challenge of creating hollow and anisotropically shaped thermoresponsive microgels, polymeric networks with a solvent filled cavity in their center that are swollen in a good solvent. Sacrificial elliptical hematite silica particles were utilized as a template for the synthesis of a cross-linked N-isopropylacrylamide (NIPAm) shell. By varying the amount of NIPAm, two anisotropic microgels were synthesized with either a thin or thick microgel shell. We characterized these precursor core–shell and the resulting hollow microgels using a combination of light, X-ray, and neutron scattering. New form factor models, accounting for the cavity, the polymer distribution and the anisotropy, have been developed for fitting the scattering data. With such models, we demonstrated the existence of the cavity and simultaneously the anisotropic character of the microgels. Furthermore, we show that the thickness of the shell has a major influence on the shape and the cavity dimension of the microgel after etching of the sacrificial core. Finally, the effect of temperature is investigated, showing that changes in size, softness, and aspect ratio are triggered by temperature.
000866776 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000866776 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000866776 588__ $$aDataset connected to CrossRef
000866776 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000866776 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000866776 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000866776 7001_ $$00000-0002-8988-330X$$aScotti, Andrea$$b1$$eCorresponding author
000866776 7001_ $$0P:(DE-Juel1)171614$$aHouston, Judith$$b2
000866776 7001_ $$0P:(DE-HGF)0$$aIto, Thiago$$b3
000866776 7001_ $$00000-0002-7434-9024$$aCrassous, Jérôme$$b4
000866776 7001_ $$00000-0002-7768-0206$$aPedersen, Jan Skov$$b5
000866776 7001_ $$0P:(DE-Juel1)IHRS-BioSoft-140012$$aRichtering, Walter$$b6$$eCorresponding author
000866776 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.9b03507$$gVol. 19, no. 11, p. 8161 - 8170$$n11$$p8161 - 8170$$tNano letters$$v19$$x1530-6992$$y2019
000866776 8564_ $$uhttps://juser.fz-juelich.de/record/866776/files/acs.nanolett.9b03507.pdf$$yRestricted
000866776 8564_ $$uhttps://juser.fz-juelich.de/record/866776/files/acs.nanolett.9b03507.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866776 909CO $$ooai:juser.fz-juelich.de:866776$$pVDB$$pVDB:MLZ
000866776 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171614$$aForschungszentrum Jülich$$b2$$kFZJ
000866776 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)IHRS-BioSoft-140012$$aForschungszentrum Jülich$$b6$$kFZJ
000866776 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000866776 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000866776 9141_ $$y2019
000866776 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866776 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866776 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866776 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2017
000866776 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866776 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866776 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866776 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866776 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866776 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866776 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866776 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2017
000866776 920__ $$lyes
000866776 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000866776 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000866776 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000866776 980__ $$ajournal
000866776 980__ $$aVDB
000866776 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000866776 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000866776 980__ $$aI:(DE-588b)4597118-3
000866776 980__ $$aUNRESTRICTED