001     866782
005     20240709112129.0
024 7 _ |a 10.1016/j.ijhydene.2019.12.016
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a 2128/24055
|2 Handle
024 7 _ |a WOS:000514018600014
|2 WOS
037 _ _ |a FZJ-2019-05848
082 _ _ |a 620
100 1 _ |a Stähler, Markus
|0 P:(DE-Juel1)129930
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Impacts of Porous Transport Layer Compression on Hydrogen Permeation im PEM Water Electrolysis
260 _ _ |a New York, NY [u.a.]
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1580204124_29580
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Gas permeation through a membrane electrode assembly (MEA) is an important issue in the development of polymer electrolyte membrane (PEM) water electrolyzers, because it can cause explosions and efficiency losses. The influence of operating pressure, temperature and MEA modifications on the permeation was already investigated. However, most of the studies pay no attention to the compression of the porous transport layer (PTL) of the MEA when assembling it in a test cell to carry out the experiments.This paper deals with the impact of the PTL compression on hydrogen permeation and cell voltage. Polarization, impedance and permeation measurements are used to demonstrate that the compression significantly affects the MEA's properties. Measurements show either a linear or nonlinear correlation between current density and hydrogen permeation, depending on the compression.The results indicate that the compression of the PTL must be taken into account for developing MEAs and comparing different permeation measurements.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Stähler, Andrea
|0 P:(DE-Juel1)132718
|b 1
|u fzj
700 1 _ |a Scheepers, Fabian
|0 P:(DE-Juel1)166215
|b 2
|u fzj
700 1 _ |a Carmo, Marcelo
|0 P:(DE-Juel1)145276
|b 3
|u fzj
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 4
|u fzj
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 5
|u fzj
773 _ _ |a 10.1016/j.ijhydene.2019.12.016
|g p. S0360319919345161
|0 PERI:(DE-600)1484487-4
|n 7
|p 4008-4014
|t International journal of hydrogen energy
|v 45
|y 2020
|x 0360-3199
856 4 _ |y Published on 2019-12-28. Available in OpenAccess from 2021-12-28.
|u https://juser.fz-juelich.de/record/866782/files/HE-D-19-04328R2_postprint.pdf
856 4 _ |y Published on 2019-12-28. Available in OpenAccess from 2021-12-28.
|x pdfa
|u https://juser.fz-juelich.de/record/866782/files/HE-D-19-04328R2_postprint.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866782
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129930
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132718
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166215
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)129883
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
981 _ _ |a I:(DE-Juel1)IET-4-20191129
981 _ _ |a I:(DE-Juel1)ICE-2-20101013
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21