000866784 001__ 866784
000866784 005__ 20240711085614.0
000866784 0247_ $$2doi$$a10.3390/coatings9120784
000866784 0247_ $$2Handle$$a2128/23471
000866784 0247_ $$2WOS$$aWOS:000506682800013
000866784 037__ $$aFZJ-2019-05850
000866784 082__ $$a660
000866784 1001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b0$$eCorresponding author
000866784 245__ $$aEnvironmental Barrier Coatings Made by Different Thermal Spray Technologies
000866784 260__ $$aBasel$$bMDPI$$c2019
000866784 3367_ $$2DRIVER$$aarticle
000866784 3367_ $$2DataCite$$aOutput Types/Journal article
000866784 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574759767_2214
000866784 3367_ $$2BibTeX$$aARTICLE
000866784 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866784 3367_ $$00$$2EndNote$$aJournal Article
000866784 520__ $$aEnvironmental barrier coatings (EBCs) are essential to protect ceramic matrix composites against water vapor recession in typical gas turbine environments. Both oxide and non-oxide-based ceramic matrix composites (CMCs) need such coatings as they show only a limited stability. As the thermal expansion coefficients are quite different between the two CMCs, the suitable EBC materials for both applications are different. In the paper examples of EBCs for both types of CMCs are presented. In case of EBCs for oxide-based CMCs, the limited strength of the CMC leads to damage of the surface if standard grit-blasting techniques are used. Only in the case of oxide-based CMCs different processes as laser ablation have been used to optimize the surface topography. Another result for many EBCs for oxide-based CMC is the possibility to deposit them by standard atmospheric plasma spraying (APS) as crystalline coatings. Hence, in case of these coatings only the APS process will be described. For the EBCs for non-oxide CMCs the state-of-the-art materials are rare earth or yttrium silicates. Here the major challenge is to obtain dense and crystalline coatings. While for the Y2SiO5 a promising microstructure could be obtained by a heat-treatment of an APS coating, this was not the case for Yb2Si2O7. Here also other thermal spray processes as high velocity oxygen fuel (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) are used and the results described mainly with respect to crystallinity and porosity
000866784 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000866784 588__ $$aDataset connected to CrossRef
000866784 7001_ $$0P:(DE-Juel1)136812$$aBakan, Emine$$b1
000866784 7001_ $$0P:(DE-Juel1)169124$$aGatzen, Caren$$b2
000866784 7001_ $$0P:(DE-HGF)0$$aKim, Seongwong$$b3
000866784 7001_ $$0P:(DE-Juel1)129630$$aMack, Daniel Emil$$b4
000866784 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b5
000866784 773__ $$0PERI:(DE-600)2662314-6$$a10.3390/coatings9120784$$gVol. 9, no. 12, p. 784 -$$n12$$p784 -$$tCoatings$$v9$$x2079-6412$$y2019
000866784 8564_ $$uhttps://juser.fz-juelich.de/record/866784/files/coatings-09-00784.pdf$$yOpenAccess
000866784 8564_ $$uhttps://juser.fz-juelich.de/record/866784/files/coatings-09-00784.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866784 909CO $$ooai:juser.fz-juelich.de:866784$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b0$$kFZJ
000866784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136812$$aForschungszentrum Jülich$$b1$$kFZJ
000866784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169124$$aForschungszentrum Jülich$$b2$$kFZJ
000866784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129630$$aForschungszentrum Jülich$$b4$$kFZJ
000866784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ
000866784 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000866784 9141_ $$y2019
000866784 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866784 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866784 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866784 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOATINGS : 2017
000866784 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000866784 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000866784 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866784 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866784 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866784 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000866784 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866784 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000866784 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000866784 9801_ $$aFullTexts
000866784 980__ $$ajournal
000866784 980__ $$aVDB
000866784 980__ $$aUNRESTRICTED
000866784 980__ $$aI:(DE-Juel1)IEK-1-20101013
000866784 980__ $$aI:(DE-82)080011_20140620
000866784 981__ $$aI:(DE-Juel1)IMD-2-20101013