000866786 001__ 866786
000866786 005__ 20240709082149.0
000866786 0247_ $$2doi$$a10.1039/C9CP04723A
000866786 0247_ $$2ISSN$$a1463-9076
000866786 0247_ $$2ISSN$$a1463-9084
000866786 0247_ $$2Handle$$a2128/25281
000866786 0247_ $$2pmid$$apmid:31774423
000866786 0247_ $$2WOS$$aWOS:000509371400020
000866786 037__ $$aFZJ-2019-05852
000866786 082__ $$a540
000866786 1001_ $$0P:(DE-Juel1)173951$$aLin, Jingjing$$b0$$ufzj
000866786 245__ $$aInfluence of Residual Water and Cation Acidity on the Ionic Transport Mechanism in Proton-Conducting Ionic Liquids
000866786 260__ $$aCambridge$$bRSC Publ.$$c2020
000866786 3367_ $$2DRIVER$$aarticle
000866786 3367_ $$2DataCite$$aOutput Types/Journal article
000866786 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1594816493_11589
000866786 3367_ $$2BibTeX$$aARTICLE
000866786 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866786 3367_ $$00$$2EndNote$$aJournal Article
000866786 520__ $$aProton-conducting ionic liquids (PILs) are discussed herein as potential new electrolytes for polymer membrane fuel cells, suitable for operation temperatures above 100 °C. During fuel cell operation, the presence of significant amounts of residual water is unavoidable, even at these elevated temperatures. By using electrochemical and NMR methods, the impact of residual water on 2-sulfoethylmethylammonium triflate [2-Sema][TfO], 1-ethylimidazolium triflate [1-EIm][TfO] and diethylmethylammonium triflate [Dema][TfO] is analyzed. The cationic acidity of these PILs varies by over ten orders of magnitude. Appropriate amounts of the PIL and H2O were mixed at various molar ratios to obtain compositions, varying from the neat PIL to H2O-excess conditions. The conductivity of [2-Sema][TfO] exponentially increases depending on the H2O concentration. The results from 1H-NMR spectroscopy and self-diffusion coefficient measurements by 1H field-gradient NMR indicate a fast proton exchange process between [2-Sema]+ and H2O. Conversely, [1-EIm][TfO] and [Dema][TfO] show only very slow or non-significant proton exchange, respectively, with H2O during the time-scale relevant for transport. The proton conduction follows a combination of vehicle and cooperative mechanisms in highly acidic PIL, while a mostly vehicle mechanism in medium and low acidic PIL occurs. Therefore, highly acidic ionic liquids are promising new candidates for polymer electrolyte fuel cells at an elevated temperature.
000866786 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000866786 588__ $$aDataset connected to CrossRef
000866786 7001_ $$0P:(DE-Juel1)161217$$aWang, Liming$$b1
000866786 7001_ $$0P:(DE-HGF)0$$aZinkevich, Tatiana$$b2
000866786 7001_ $$0P:(DE-HGF)0$$aIndris, Sylvio$$b3
000866786 7001_ $$0P:(DE-Juel1)172823$$aSuo, Yanpeng$$b4$$ufzj
000866786 7001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b5$$eCorresponding author$$ufzj
000866786 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C9CP04723A$$gp. 10.1039.C9CP04723A$$n3$$p1145-1153$$tPhysical chemistry, chemical physics$$v22$$x1463-9076$$y2020
000866786 8564_ $$uhttps://juser.fz-juelich.de/record/866786/files/Lin_Jingjing.pdf$$yPublished on 2019-11-18. Available in OpenAccess from 2020-11-18.
000866786 8564_ $$uhttps://juser.fz-juelich.de/record/866786/files/Lin_Jingjing.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-11-18. Available in OpenAccess from 2020-11-18.
000866786 909CO $$ooai:juser.fz-juelich.de:866786$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173951$$aForschungszentrum Jülich$$b0$$kFZJ
000866786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172823$$aForschungszentrum Jülich$$b4$$kFZJ
000866786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b5$$kFZJ
000866786 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000866786 9141_ $$y2020
000866786 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866786 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866786 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2017
000866786 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866786 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866786 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866786 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866786 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000866786 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866786 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866786 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000866786 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866786 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866786 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866786 920__ $$lyes
000866786 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000866786 9801_ $$aFullTexts
000866786 980__ $$ajournal
000866786 980__ $$aVDB
000866786 980__ $$aUNRESTRICTED
000866786 980__ $$aI:(DE-Juel1)IEK-14-20191129
000866786 981__ $$aI:(DE-Juel1)IET-4-20191129