000866810 001__ 866810
000866810 005__ 20220930130224.0
000866810 0247_ $$2doi$$a10.2136/vzj2019.06.0063
000866810 0247_ $$2Handle$$a2128/23475
000866810 0247_ $$2altmetric$$aaltmetric:70467069
000866810 0247_ $$2WOS$$aWOS:000495432100001
000866810 037__ $$aFZJ-2019-05873
000866810 082__ $$a550
000866810 1001_ $$0P:(DE-HGF)0$$aKotlar, Ali Mehmandoost$$b0$$eCorresponding author
000866810 245__ $$aDevelopment and Uncertainty Assessment of Pedotransfer Functions for Predicting Water Contents at Specific Pressure Heads
000866810 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2019
000866810 3367_ $$2DRIVER$$aarticle
000866810 3367_ $$2DataCite$$aOutput Types/Journal article
000866810 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1583997948_3902
000866810 3367_ $$2BibTeX$$aARTICLE
000866810 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866810 3367_ $$00$$2EndNote$$aJournal Article
000866810 520__ $$aThere has been much effort to improve the performance of pedotransfer functions (PTFs) using intelligent algorithms, but the issue of covariate shift, i.e., different probability distributions in training and testing datasets, and its impact on prediction uncertainty of PTFs has been rarely addressed. The common practice in PTF generation is to randomly separate the dataset into training and testing subsets, and the outcomes of this random selection may be different if the process is subject to covariate shift. We evaluated the impact of covariate shift generated by data shuffling and detected by Kolmogorov–Smirnov test for the prediction of water contents using soil databases from Denmark and Brazil. The soil water contents at different pressure heads were predicted by developing linear and stepwise regression besides machine learning based PTFs including Gaussian process regression and ensemble method. Regression based PTFs for the Brazilian dataset resulted in better predictions compared with machine learning methods, which in their turn estimated high water contents in Danish soils more accurately. One hundred PTFs were developed for water content at specific pressure heads by data shuffling. From these, 100 sets of fitted van Genuchten parameters were obtained representing the generated uncertainty. Data shuffling led to covariate shift, resulting in uncertainty in water content prediction by the PTFs. Inherent variability of data may lead to increased prediction uncertainty. For correlated data, simple regression models performed as good as sophisticated machine learning methods. Using PTF‐predicted water contents for van Genuchten retention parameter fitting may lead to a high uncertainty.
000866810 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000866810 588__ $$aDataset connected to CrossRef
000866810 7001_ $$0P:(DE-HGF)0$$ade Jong van Lier, Quirijn$$b1
000866810 7001_ $$0P:(DE-HGF)0$$aBarros, Alexandre Hugo C.$$b2
000866810 7001_ $$0P:(DE-HGF)0$$aIversen, Bo V.$$b3
000866810 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4
000866810 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2019.06.0063$$gVol. 18, no. 1, p. 0 -$$n1$$p190063 -$$tVadose zone journal$$v18$$x1539-1663$$y2019
000866810 8564_ $$uhttps://juser.fz-juelich.de/record/866810/files/Invoice_759575.pdf
000866810 8564_ $$uhttps://juser.fz-juelich.de/record/866810/files/vzj-18-1-190063.pdf$$yOpenAccess
000866810 8564_ $$uhttps://juser.fz-juelich.de/record/866810/files/vzj-18-1-190063.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866810 8564_ $$uhttps://juser.fz-juelich.de/record/866810/files/Invoice_759575.pdf?subformat=pdfa$$xpdfa
000866810 8767_ $$8759575$$92019-10-31$$d2020-03-16$$eAPC$$jZahlung erfolgt$$zExt. Corresp. author, USD 2350,-, Belegnr. 1200151624
000866810 909CO $$ooai:juser.fz-juelich.de:866810$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000866810 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b4$$kFZJ
000866810 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000866810 9141_ $$y2019
000866810 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866810 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000866810 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2017
000866810 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866810 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866810 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866810 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866810 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000866810 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866810 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866810 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000866810 980__ $$ajournal
000866810 980__ $$aVDB
000866810 980__ $$aI:(DE-Juel1)IBG-3-20101118
000866810 980__ $$aAPC
000866810 980__ $$aUNRESTRICTED
000866810 9801_ $$aAPC
000866810 9801_ $$aFullTexts