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Development and Uncertainty 
Assessment of Pedotransfer Functions 
for Predicting Water Contents 
at Speci�c Pressure Heads
Ali Mehmandoost Kotlar,* Quirijn de Jong van Lier, 
Alexandre Hugo C. Barros, Bo V. Iversen, and Harry Vereecken

There has been much effort to improve the performance of pedotransfer func-
tions (PTFs) using intelligent algorithms, but the issue of covariate shift, i.e., 
different probability distributions in training and testing datasets, and its impact 
on prediction uncertainty of PTFs has been rarely addressed. The common 
practice in PTF generation is to randomly separate the dataset into training and 
testing subsets, and the outcomes of this random selection may be different if 
the process is subject to covariate shift. We evaluated the impact of covariate 
shift generated by data shuffling and detected by Kolmogorov–Smirnov test for 
the prediction of water contents using soil databases from Denmark and Brazil. 
The soil water contents at different pressure heads were predicted by developing 
linear and stepwise regression besides machine learning based PTFs including 
Gaussian process regression and ensemble method. Regression based PTFs for 
the Brazilian dataset resulted in better predictions compared with machine learn-
ing methods, which in their turn estimated high water contents in Danish soils 
more accurately. One hundred PTFs were developed for water content at specific 
pressure heads by data shuffling. From these, 100 sets of fitted van Genuchten 
parameters were obtained representing the generated uncertainty. Data shuf-
fling led to covariate shift, resulting in uncertainty in water content prediction by 
the PTFs. Inherent variability of data may lead to increased prediction uncertainty. 
For correlated data, simple regression models performed as good as sophisti-
cated machine learning methods. Using PTF-predicted water contents for van 
Genuchten retention parameter fitting may lead to a high uncertainty.

Abbreviations: BD, bulk density; ENS, ensemble regression with bagging aggregation; GP, Gaussian pro-
cess; LM, linear model; OM, organic matter; PTF, pedotransfer function; SLM, stepwise linear model.

Pedotransfer functions (PTFs) correlate more readily available soil characteristics 

such as texture, particle size fractions, organic matter (OM), and bulk density (BD) to 

properties that are more difficult to measure (Bouma, 1989). Pedotransfer functions to pre-

dict soil hydraulic properties, especially soil water retention, are among the most frequently 

used. These functions are used in the simulation of soil processes across scales and in land 

surface and Earth system models and may be an interesting alternative to direct measure-

ments (McBratney et al., 2002; Van Looy et al., 2017). Although these PTF-based indirect 

estimations significantly reduce experimental cost and time, they introduce uncertainty 

in simulations of soil processes.

Pedotransfer functions are developed using some kind of statistical fitting procedure. 

Regression-based PTFs for the prediction of water content  as a function of pressure head 

h using particle size fractions, OM content, and BD were developed initially by Gupta and 

Larson (1979) and Rawls et al. (1982) using data from the United States. Similar func-

tions were developed and tested later by Minasny et al. (1999), Tomasella et al. (2000), 

and Børgesen et al. (2008) for soils from New Zealand, Brazil, and Denmark, respec-

tively. Further developments beyond the classical regression analysis include techniques 

like artificial neural networks (Schaap and Leij, 1998a, 1998b; Minasny and McBratney, 
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contents determined at −0.6, −1, −3, −5, −10, −20, and −150 m 

pressure head ( 0.6, 1, 3, 5, 10, 20, 150, respectively), particle 

size fractions (sand, silt, and clay contents), OM, and BD.

Soil data from a temperate region were obtained from a 

Danish database containing 186 samples (Fig. 1b), mostly collected 

from the Jutland peninsula, western Denmark (Iversen et al., 2011; 

Børgesen and Schaap, 2005), containing similar information but 

with water contents at only four pressure heads: −0.1, −1, −10, 

and −150 m ( 0.1, 1, 10, and 150, respectively). In both datasets, 

particle size was classified according to the USDA Soil Taxonomy 

as clay (<0.002 mm), silt (0.002–0.05 mm), and sand (0.05–2 mm). 

The saturated water content ( s) was considered equal to the total 

porosity and was calculated from BD and particle density (assumed 

equal to 2.65 g cm−3).

Model Description
Covariate Shift and Development 
of Pedotransfer Functions

For each dataset (Denmark and Brazil-NE), regression and 

machine learning based PTFs were developed for estimating water 

contents at the available pressure heads. The training dataset com-

prised 70% of data randomly allocated; the remaining 30% were the 

testing dataset. The presence of covariate shift, when the training and 

testing dataset have different statistical distributions, was tested by 

randomly shuffling the data and reallocating them 100 times among 

the training and testing sets. For each random shuffle, a PTF for each 

pressure head was developed based on the resulting training set. The 

statistical properties of the training and testing stages were compared 

for each shuffle by graphically representing the correlation between 

mean and variance values of the training and testing data and by per-

forming a Kolmogorov–Smirnov test to explore whether training and 

testing datasets presented the same frequency distributions.

Regression methods used to develop PTFs included two more 

common simple methods (the linear model [LM] and the stepwise 

linear model [SLM]), and two more complex machine learning 

methods: Gaussian process (GP) regression and ensemble regres-

sion with bagging aggregation (ENS).

In the LM, all predictor variables are fitted at once. The SLM 

adds predictors one by one and computes the p value of an F statis-

tic to add or remove potential variables; the final model is obtained 

when no single step improves the model.

In Gaussian process (GP) regression, nearest neighbors are used 

by considering the distance between them based on a covariance (or 

kernel) function. The closeness or similarity between two points 

(distance) is given by kernel functions (Rasmussen and Williams, 

2006). Kernel similarities between a test point and each point of the 

training data are found to predict the target of the test point, thus 

kernel values of far-away points tend to zero (Kotlar et al., 2019b). In 

mathematical form, GP regression can be represented as

tr trstr

T
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GP 0,
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Y K K
  [1]

where Ytr and Yts are training and testing targets (e.g., water con-

tents) and Ktr, Kts, and Ktrs are the covariance of the training data, 

the testing data, and the covariance between the training and test-

ing data, respectively. Considering a Gaussian likelihood function, 

the predictive mean yts for a given test point (xts) is

ts

T 1
ts tr trxy K YK   [2]

where 
ts

T
xK  is the vector with the distances from xts to each train-

ing point. The optimization of kernel parameters and other details 

are given in Kotlar et al. (2019b, 2019c), who successfully applied 

Gaussian regression. The length scale of each predictor extracted 

from its squared exponential kernel function shows the weight or 

importance of the respective predictor in the prediction by a GP 

PTF. The relative importance of each predictor is computed by 

dividing each predictor importance by the sum of the importance 

of all the predictors.

The ENS is based on the aggregation of results from multiple 

learning algorithms (decision tree or weak learners) into a robust 

ensemble predictor (Zhang and Ma, 2012). The bootstrap aggre-

gation (bagging) algorithm generally forms deep trees with less 

concern about overfitting (Møller et al., 2018). The relative impor-

tance of each predictor in random forest is obtained by summing 

the changes in the errors due to each split and dividing the sum by 

the number of branch nodes.

Water Retention Fitting
After obtaining 100 PTFs for each development technique as 

described above, water contents 0.6, 1, 3, 5, 10, 20 and 150 for 

Brazil-NE and 0.1, 1, 10 and 150 for Denmark, corresponding 

to the respective pressure heads, were obtained using the best of 

the developed PTFs among the LM, SLM, GP, and ENS methods. 

Water content predictions were fitted to the van Genuchten (1980) 

equation, using the RETC software (van Genuchten et al., 1991):

r
e

s r

 1
mnh

S h h   [3]

where Se is the effective saturation, s and r are saturated and 

residual volumetric water contents, respectively,  (m−1) is a 

scale parameter, and m and n are curve shape parameters, with 

m = 1 − 1/n.

Model Evaluation
The performance of the developed PTFs for predicting the 

target (water content) was evaluated by the root mean square 

error (RMSE), the coefficient of determination R2, representing 

the proportion of the variance in the measured data, and finally 

the Nash–Sutcliffe efficiency (NSE), showing the match between 

observed and predicted values:
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