001     866813
005     20210130003635.0
024 7 _ |a 10.1002/biot.201800444
|2 doi
024 7 _ |a 1860-6768
|2 ISSN
024 7 _ |a 1860-7314
|2 ISSN
024 7 _ |a 2128/23473
|2 Handle
024 7 _ |a altmetric:58579545
|2 altmetric
024 7 _ |a pmid:30927493
|2 pmid
024 7 _ |a WOS:000483834000016
|2 WOS
037 _ _ |a FZJ-2019-05876
082 _ _ |a 570
100 1 _ |a Stella, Roberto G.
|0 P:(DE-Juel1)165361
|b 0
245 _ _ |a Evolutionary engineering of Corynebacterium glutamicum
260 _ _ |a Weinheim
|c 2019
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1574760179_2427
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Biotechnologie 1
520 _ _ |a A unique feature of biotechnology is that we can harness the power of evolution to improve process performance. Rational engineering of microbial strains has led to the establishment of a variety of successful bioprocesses, but it is hampered by the overwhelming complexity of biological systems. Evolutionary engineering represents a straightforward approach for fitness‐linked phenotypes (e.g., growth or stress tolerance) and is successfully applied to select for strains with improved properties for particular industrial applications. In recent years, synthetic evolution strategies have enabled selection for increased small molecule production by linking metabolic productivity to growth as a selectable trait. This review summarizes the evolutionary engineering strategies performed with the industrial platform organism Corynebacterium glutamicum. An increasing number of recent studies highlight the potential of adaptive laboratory evolution (ALE) to improve growth or stress resistance, implement the utilization of alternative carbon sources, or improve small molecule production. Advances in next‐generation sequencing and automation technologies will foster the application of ALE strategies to streamline microbial strains for bioproduction and enhance our understanding of biological systems.
536 _ _ |a 581 - Biotechnology (POF3-581)
|0 G:(DE-HGF)POF3-581
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wiechert, Johanna
|0 P:(DE-Juel1)171113
|b 1
700 1 _ |a Noack, Stephan
|0 P:(DE-Juel1)129050
|b 2
700 1 _ |a Frunzke, Julia
|0 P:(DE-Juel1)138503
|b 3
|e Corresponding author
773 _ _ |a 10.1002/biot.201800444
|g Vol. 14, no. 9, p. 1800444 -
|0 PERI:(DE-600)2214038-4
|n 9
|p 1800444 -
|t Biotechnology journal
|v 14
|y 2019
|x 1860-7314
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/866813/files/Stella%20et%20al_2019_BiotechJ.pdf
856 4 _ |y OpenAccess
|x pdfa
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/866813/files/Stella%20et%20al_2019_BiotechJ.pdf?subformat=pdfa
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/866813/files/Stella_et_al-2019-Biotechnology_Journal.pdf
856 4 _ |y Restricted
|x pdfa
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/866813/files/Stella_et_al-2019-Biotechnology_Journal.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866813
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165361
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171113
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129050
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138503
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOTECHNOL J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21