000866828 001__ 866828
000866828 005__ 20240712101048.0
000866828 0247_ $$2doi$$a10.5194/acp-19-10073-2019
000866828 0247_ $$2ISSN$$a1680-7316
000866828 0247_ $$2ISSN$$a1680-7324
000866828 0247_ $$2Handle$$a2128/23476
000866828 0247_ $$2altmetric$$aaltmetric:64763976
000866828 0247_ $$2WOS$$aWOS:000480315800006
000866828 037__ $$aFZJ-2019-05891
000866828 082__ $$a550
000866828 1001_ $$00000-0003-1018-9874$$aEvoy, Erin$$b0$$eCorresponding author
000866828 245__ $$aPredictions of diffusion rates of large organic molecules in secondary organic aerosols using the Stokes–Einstein and fractional Stokes–Einstein relations
000866828 260__ $$aKatlenburg-Lindau$$bEGU$$c2019
000866828 3367_ $$2DRIVER$$aarticle
000866828 3367_ $$2DataCite$$aOutput Types/Journal article
000866828 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574762138_1638
000866828 3367_ $$2BibTeX$$aARTICLE
000866828 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866828 3367_ $$00$$2EndNote$$aJournal Article
000866828 520__ $$aInformation on the rate of diffusion of organic molecules within secondary organic aerosol (SOA) is needed to accurately predict the effects of SOA on climate and air quality. Diffusion can be important for predicting the growth, evaporation, and reaction rates of SOA under certain atmospheric conditions. Often, researchers have predicted diffusion rates of organic molecules within SOA using measurements of viscosity and the Stokes–Einstein relation (D∝1/η, where D is the diffusion coefficient and η is viscosity). However, the accuracy of this relation for predicting diffusion in SOA remains uncertain. Using rectangular area fluorescence recovery after photobleaching (rFRAP), we determined diffusion coefficients of fluorescent organic molecules over 8 orders in magnitude in proxies of SOA including citric acid, sorbitol, and a sucrose–citric acid mixture. These results were combined with literature data to evaluate the Stokes–Einstein relation for predicting the diffusion of organic molecules in SOA. Although almost all the data agree with the Stokes–Einstein relation within a factor of 10, a fractional Stokes–Einstein relation (D∝1/ηξ) with ξ=0.93 is a better model for predicting the diffusion of organic molecules in the SOA proxies studied. In addition, based on the output from a chemical transport model, the Stokes–Einstein relation can overpredict mixing times of organic molecules within SOA by as much as 1 order of magnitude at an altitude of ∼3 km compared to the fractional Stokes–Einstein relation with ξ=0.93. These results also have implications for other areas such as in food sciences and the preservation of biomolecules.
000866828 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000866828 588__ $$aDataset connected to CrossRef
000866828 7001_ $$0P:(DE-HGF)0$$aMaclean, Adrian M.$$b1
000866828 7001_ $$00000-0001-9454-3169$$aRovelli, Grazia$$b2
000866828 7001_ $$0P:(DE-HGF)0$$aLi, Ying$$b3
000866828 7001_ $$0P:(DE-Juel1)178035$$aTsimpidi, Alexandra P.$$b4
000866828 7001_ $$0P:(DE-Juel1)176592$$aKarydis, Vlassis A.$$b5
000866828 7001_ $$0P:(DE-HGF)0$$aKamal, Saeid$$b6
000866828 7001_ $$00000-0001-6307-3846$$aLelieveld, Jos$$b7
000866828 7001_ $$0P:(DE-HGF)0$$aShiraiwa, Manabu$$b8
000866828 7001_ $$00000-0001-6022-1778$$aReid, Jonathan P.$$b9
000866828 7001_ $$00000-0002-5621-2323$$aBertram, Allan K.$$b10
000866828 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-19-10073-2019$$gVol. 19, no. 15, p. 10073 - 10085$$n15$$p10073 - 10085$$tAtmospheric chemistry and physics$$v19$$x1680-7324$$y2019
000866828 8564_ $$uhttps://juser.fz-juelich.de/record/866828/files/acp-19-10073-2019.pdf$$yOpenAccess
000866828 8564_ $$uhttps://juser.fz-juelich.de/record/866828/files/acp-19-10073-2019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866828 909CO $$ooai:juser.fz-juelich.de:866828$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000866828 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178035$$aForschungszentrum Jülich$$b4$$kFZJ
000866828 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176592$$aForschungszentrum Jülich$$b5$$kFZJ
000866828 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000866828 9141_ $$y2019
000866828 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866828 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866828 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866828 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000866828 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000866828 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000866828 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866828 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866828 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866828 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866828 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000866828 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000866828 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866828 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866828 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866828 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000866828 9801_ $$aFullTexts
000866828 980__ $$ajournal
000866828 980__ $$aVDB
000866828 980__ $$aUNRESTRICTED
000866828 980__ $$aI:(DE-Juel1)IEK-8-20101013
000866828 981__ $$aI:(DE-Juel1)ICE-3-20101013