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Abstract. Information on the rate of diffusion of organic
molecules within secondary organic aerosol (SOA) is needed
to accurately predict the effects of SOA on climate and
air quality. Diffusion can be important for predicting the
growth, evaporation, and reaction rates of SOA under cer-
tain atmospheric conditions. Often, researchers have pre-
dicted diffusion rates of organic molecules within SOA us-
ing measurements of viscosity and the Stokes–Einstein re-
lation (D ∝ 1/η, where D is the diffusion coefficient and η

is viscosity). However, the accuracy of this relation for pre-
dicting diffusion in SOA remains uncertain. Using rectangu-
lar area fluorescence recovery after photobleaching (rFRAP),
we determined diffusion coefficients of fluorescent organic
molecules over 8 orders in magnitude in proxies of SOA in-
cluding citric acid, sorbitol, and a sucrose–citric acid mix-
ture. These results were combined with literature data to
evaluate the Stokes–Einstein relation for predicting the dif-
fusion of organic molecules in SOA. Although almost all the
data agree with the Stokes–Einstein relation within a fac-
tor of 10, a fractional Stokes–Einstein relation (D ∝ 1/ηξ )
with ξ = 0.93 is a better model for predicting the diffusion
of organic molecules in the SOA proxies studied. In addi-
tion, based on the output from a chemical transport model,

the Stokes–Einstein relation can overpredict mixing times of
organic molecules within SOA by as much as 1 order of mag-
nitude at an altitude of ∼ 3 km compared to the fractional
Stokes–Einstein relation with ξ = 0.93. These results also
have implications for other areas such as in food sciences
and the preservation of biomolecules.

1 Introduction

Atmospheric aerosols, suspensions of micrometer and sub-
micrometer particles in the Earth’s atmosphere, modify cli-
mate by interacting with incoming solar radiation and by al-
tering cloud formation and cloud properties (Stocker et al.,
2013). These aerosols also negatively impact air quality and
may facilitate the long-range transport of pollutants (Fried-
man et al., 2014; Mu et al., 2018; Shrivastava et al., 2017a;
Vaden et al., 2011; Zelenyuk et al., 2012).

A large fraction of atmospheric aerosols are classified as
secondary organic aerosol (SOA). SOA is formed in the
atmosphere when volatile organic molecules, emitted from
both anthropogenic and natural sources, are oxidized and
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partition to the particle phase (Ervens et al., 2011; Hallquist
et al., 2009). The exact chemical composition of SOA re-
mains uncertain; however, measurements have shown that
SOA contains thousands of different organic molecules,
and the average oxygen-to-carbon (O : C) ratio of organic
molecules in SOA ranges from 0.3 to 1.0 or even higher
(Aiken et al., 2008; Cappa and Wilson, 2012; Chen et al.,
2009; DeCarlo et al., 2008; Ditto et al., 2018; Hawkins et al.,
2010; Heald et al., 2010; Jimenez et al., 2009; Laskin et al.,
2018; Ng et al., 2010; Nozière et al., 2015; Takahama et al.,
2011; Tsimpidi et al., 2018). SOA also contains a range of
organic functional groups including alcohols and carboxylic
acids (Claeys et al., 2004, 2007; Edney et al., 2005; Fisseha
et al., 2004; Glasius et al., 2000; Liu et al., 2011; Surratt et
al., 2006, 2010).

In order to accurately predict the impacts of SOA on cli-
mate, air quality, and the long-range transport of pollutants,
information on the rate of diffusion of organic molecules
within SOA is needed. For example, predictions of SOA par-
ticle size, which has implications for climate and visibility,
vary significantly in simulations as the diffusion rate of or-
ganic molecules is varied from 10−17 to 10−19 m2 s−1 (Za-
veri et al., 2014). Lifetimes of polycyclic aromatic hydrocar-
bons (PAHs) in an SOA particle increase as the bulk diffusion
coefficient of PAHs decreases from 10−16 m2 s−1 at a rela-
tive humidity of 50 % to 10−18 m2 s−1 under dry conditions
(Zhou et al., 2019). Shrivastava et al. (2017a) have shown
that including shielding by a viscous organic aerosol coat-
ing (equivalent to a bulk diffusion limitation) results in bet-
ter model predictions of observed concentrations of PAHs.
Reactivity in SOA can also depend on the diffusion rates
of organic molecules (Davies and Wilson, 2015; Lakey et
al., 2016; Li et al., 2015; Liu et al., 2018; Shiraiwa et al.,
2011; Zhang et al., 2018; Zhou et al., 2013). For the cases
discussed above, the diffusion of organic molecules within
SOA becomes a rate-limiting step only when diffusion rates
are small.

In some cases, the diffusion rates of organic molecules
in SOA have been measured or inferred from experiments
(Abramson et al., 2013; Liu et al., 2016; Perraud et al., 2012;
Ullmann et al., 2019; Ye et al., 2016). However, in most
cases researchers have predicted diffusion rates of organic
molecules within SOA using measurements of viscosities
and the Stokes–Einstein relation (Booth et al., 2014; Hosny
et al., 2013; Koop et al., 2011; Maclean et al., 2017; Power et
al., 2013; Renbaum-Wolff et al., 2013; Shiraiwa et al., 2011;
Song et al., 2015, 2016a). This is due to the development and
application of several techniques that can measure the vis-
cosity of ambient aerosol or small volumes in the laboratory
(Grayson et al., 2015; Pajunoja et al., 2014; Renbaum-Wolff
et al., 2013; Song et al., 2016b; Virtanen et al., 2010). The
Stokes–Einstein relation (Eq. 1) states that diffusion is in-

versely related to viscosity:

D =
kT

6πηRH
, (1)

where D is the diffusion coefficient, k is the Boltzmann con-
stant, T is the temperature in Kelvin, RH is the hydrodynamic
radius of the diffusing species, and η is the viscosity of the
matrix. Until now, only a few studies have investigated the
accuracy of the Stokes–Einstein relation for predicting the
diffusion coefficients of organic molecules in SOA, and al-
most all of these studies relied on sucrose as a proxy for
SOA particles (Bastelberger et al., 2017; Chenyakin et al.,
2017; Price et al., 2016). Sucrose was used as a proxy for
SOA in these studies because (1) sucrose has an O : C ratio
similar to that of highly oxidized components of SOA, and
(2) viscosity and diffusion data for sucrose exist in the lit-
erature (mainly from the food science literature, as well as
from Power et al., 2013, who reported viscosities far outside
the range of what had previously been reported). However,
studies with other proxies of SOA are required to determine
if the Stokes–Einstein relation can accurately represent the
diffusion of organic molecules in SOA and to more accu-
rately predict the role of SOA in climate, air quality, and the
transport of pollutants (Reid et al., 2018; Shrivastava et al.,
2017b).

In the following, we expand on previous studies with
sucrose matrices by testing the Stokes–Einstein relation in
the following proxies for SOA: 2-hydroxypropane-1,2,3-
tricarboxylic acid (i.e., citric acid), 1,2,3,4,5,6-hexanol (i.e.,
sorbitol), and a mixture of citric acid and sucrose. These
proxies have functional groups that have been identified in
SOA and O : C ratios similar to those ratios found in the
most highly oxidized components of SOA in the atmosphere
(1.16, 1.0, and 0.92 for citric acid, sorbitol, and sucrose,
respectively). To test the Stokes–Einstein relation, we first
determined the diffusion coefficients of fluorescent organic
molecules as a function of water activity (aw) in these SOA
proxies using rectangular area fluorescence recovery after
photobleaching (rFRAP; Deschout et al., 2010). Studies as
a function of aw are critical because as the relative humidity
(RH) changes in the atmosphere, aw (and hence water con-
tent) in SOA will change to maintain equilibrium with the gas
phase. The diffusing organic molecules studied in this work
were the fluorescent organic molecules rhodamine 6G and
cresyl violet (Fig. S1 in the Supplement). Details of the ex-
periments are given in the Methods section. The experimen-
tal diffusion coefficients are compared with predictions using
literature viscosities (Rovelli et al., 2019; Song et al., 2016b)
and the Stokes–Einstein relation. The results from the current
study are then combined with literature diffusion (Champion
et al., 1997; Chenyakin et al., 2017; Price et al., 2016; Rampp
et al., 2000; Ullmann et al., 2019) and viscosity (Först et al.,
2002; Grayson et al., 2017; Green and Perry, 2007; Haynes,
2015; Lide, 2001; Migliori et al., 2007; Power et al., 2013;
Quintas et al., 2006; Rovelli et al., 2019; Swindells et al.,
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1958; Telis et al., 2007; Ullmann et al., 2019) data to assess
the ability of the Stokes–Einstein relation to predict the diffu-
sion of organic molecules in atmospheric SOA. The ability of
the fractional Stokes–Einstein relation (see below) to predict
diffusion is also tested.

In addition to atmospheric applications, the results from
this study have implications for other areas in which the dif-
fusion of organic molecules within organic–water matrices
is important, such as the cryopreservation of proteins (Ci-
cerone and Douglas, 2012; Fox, 1995; Miller et al., 1998),
the storage of food products (Champion et al., 1997; van der
Sman and Meinders, 2013), and the viability of pharmaceu-
tical formulations (Shamblin et al., 1999). The results also
have implications for our understanding of the properties of
deeply supercooled and supersaturated glass-forming solu-
tions, which are important for a wide range of applications
and technologies (Angell, 1995; Debenedetti and Stillinger,
2001; Ediger, 2000).

2 Methods

2.1 Preparation of fluorescent organic–water films

The technique used here to determine diffusion coefficients
required thin films containing the organic matrix (i.e., citric
acid or sorbitol or a mixture of citric acid and sucrose), water,
and trace amounts of the diffusing organic molecules (i.e.,
fluorescent organic molecules). Citric acid (≥ 99 % purity)
and sorbitol (≥ 98 % purity) were purchased from Sigma-
Aldrich and used as received. Rhodamine 6G chloride (≥
99 % purity) and cresyl violet acetate (≥ 75 % purity) were
purchased from Acros Organics and Santa Cruz Biotechnol-
ogy, respectively, and used as received. Solutions contain-
ing the organic matrix, water, and the diffusing molecules
were prepared gravimetrically; 55 wt % citric acid solutions
and 30 wt % sorbitol and sucrose–citric acid solutions were
used to prepare the citric acid, sorbitol, and sucrose–citric
acid thin films, respectively. A mass ratio of 60 : 40 sucrose
to citric acid was used for the sucrose–citric acid matrix.
The concentrations of rhodamine 6G and cresyl violet in
the solutions were 0.06 and 0.08 mM, respectively. After the
solutions were prepared gravimetrically, the solutions were
passed through a 0.02 µm filter (Whatman™) to eliminate
impurities. Droplets of the solution were placed on cleaned
siliconized hydrophobic slides (Hampton Research), by ei-
ther nebulizing the bulk solution or using the tip of a ster-
ilized needle (BD PrecisionGlide Needle, Franklin Lakes,
NJ, USA). The generated droplets ranged in diameter from
∼ 100 to ∼ 1300 µm. After the droplets were located on the
hydrophobic slides, the hydrophobic slides were placed in-
side sealed glass containers with a controlled water activity
(aw). The aw was set by placing saturated inorganic salt so-
lutions with known aw values within the sealed glass con-
tainers. The aw values used ranged from 0.14 to 0.86. When

the aw values were higher than 0.86, recovery times were too
fast to measure with the rFRAP setup. When the aw values
were lower than 0.14 or 0.23, depending on the organic so-
lute, solution droplets often crystallized. The slides holding
the droplets were left inside the sealed glass containers for
an extended period of time to allow the droplets to equili-
brate with the surrounding aw. The method used to calculate
equilibration times is explained in Sect. S1 in the Supple-
ment, and conditioning times for all samples are given in Ta-
bles S2–S5 in the Supplement. Experimental times for condi-
tioning were a minimum of 3 times longer than the calculated
equilibration times.

After the droplets on the slides reached equilibrium with
the aw of the airspace over the salt solution, the sealed glass
containers holding the slides and conditioned droplets were
brought into a Glove Bag™ (Glas-Col). The aw within the
Glove Bag was controlled using a humidified flow of N2 gas
and monitored using a handheld hygrometer. The aw within
the Glove Bag™ was set to the same aw as used to condition
the droplets to prevent the droplets from being exposed to
an unknown and uncontrolled aw. To form a thin film, alu-
minum spacers were placed on the siliconized glass slide
holding the droplets, followed by another siliconized glass
slide, which sandwiched the droplets and the aluminum spac-
ers. The thickness of the aluminum spacers (30–50 µm) de-
termined the thickness of the thin film. The two slides were
sealed together by vacuum grease spread around the perime-
ter of one slide before sandwiching (see Fig. S2 for details).

The organic matrices were often supersaturated with re-
spect to crystalline citric acid or sorbitol. Nevertheless, crys-
tallization was not observed in most cases until aw values
0.14–0.23, depending on the organic matrix, because the so-
lutions were passed through a 0.02 µm filter and the glass
slides used to make the thin films were covered with a hy-
drophobic coating. Filtration likely removed heterogeneous
nuclei that could initiate crystallization, and the hydrophobic
coating reduced the ability of these surfaces to promote het-
erogeneous nucleation (Bodsworth et al., 2010; Pant et al.,
2006; Price et al., 2014; Wheeler and Bertram, 2012). In the
cases in which crystallization was observed, determined us-
ing optical microscopy, the films were not used in rFRAP
experiments. An image demonstrating the difference in ap-
pearance between crystallized and noncrystallized droplets is
given in Fig. S3. We did not condition droplets without fluo-
rescent organic molecules to determine the effect of the tracer
molecules on crystallization. However, previous studies have
shown that droplets with the compositions and range of aw
values studied here can exist in the metastable liquid state
if heterogeneous nucleation by surfaces is reduced. Further-
more, since the concentration of the tracers in the droplets
were so low, the tracers are not expected to change the driv-
ing force for crystallization in the droplets.
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2.2 Rectangular area fluorescence recovery after

photobleaching (rFRAP) technique and extraction

of diffusion coefficients

Diffusion coefficients were determined using the rFRAP
technique reported by Deschout et al. (2010). The technique
uses a confocal laser scanning microscope to photobleach
fluorescent molecules in a specified volume of an organic
thin film containing fluorescent molecules. The photobleach-
ing event initially reduces the fluorescence intensity within
the bleached volume. Afterward, the fluorescence intensity
within the photobleached volume recovers due to the diffu-
sion of fluorescent molecules from outside the bleached re-
gion. From the time-dependent recovery of the fluorescence
intensity, diffusion coefficients are determined. All diffusion
experiments here were performed at 295 ± 1 K.

The rFRAP experiments were performed on a Zeiss Axio
Observer LSM 510MP laser scanning microscope with a
10X, 0.3 NA objective, and a pinhole setting between 80
and 120 µm. Photobleaching and the subsequent acquisition
of recovery images were done using a 543 nm helium–neon
(HeNe) laser. The bleach parameters (e.g., laser intensity, it-
erations, laser speed) were varied for each experiment so that
the fraction of fluorescent molecules being photobleached in
the bleach region was about 30 %. A photobleaching of about
30 % was suggested by Deschout et al. (2010), who report
that diffusion coefficients determined using the rFRAP tech-
nique are independent of the extent of photobleaching up to
a bleach depth of 50 %. The energy absorbed by the thin film
during photobleaching is not expected to affect experimen-
tal diffusion coefficients. Although local heating may occur
during photobleaching, the thermal diffusivity in the samples
is orders of magnitude greater than the molecular diffusivity,
and the heat resulting from photobleaching will dissipate to
the surroundings on a timescale much faster than the diffu-
sion of molecules will occur (Chenyakin et al., 2017). Mea-
surements as a function of photobleaching size and power
are consistent with this expectation (Chenyakin et al., 2017;
Ullmann et al., 2019).

Bleached areas ranged from 20 to 400 µm2. The geome-
try of the photobleached region was a square with sides of
length lx and ly ranging from 4.5 to 20 µm. Smaller bleach ar-
eas were used in experiments in which diffusion was slower
in order to shorten recovery times. Chenyakin et al. (2017)
showed that experimental diffusion coefficients varied by
less than the experimental uncertainty when the bleach area
was varied from 1 to 2500 µm2 in sucrose–water films. Sim-
ilarly, Deschout et al. (2010) demonstrated that diffusion co-
efficients varied by less than the experimental uncertainty
when the bleach area was varied from approximately 4 to
144 µm2 in sucrose–water films. The images collected dur-
ing an rFRAP experiment represent fluorescence intensities
as a function of x and y coordinates and are taken at regular
time intervals after photobleaching. An example of images
recorded during an rFRAP experiment is shown in Fig. S4.

Every image taken following the photobleaching event is nor-
malized relative to an image taken before photobleaching. To
reduce noise, all images are downsized by averaging from a
resolution of 512 × 512 to 128 × 128 pixels.

The mathematical description of the fluorescence intensity
as a function of position (x and y) and time (t) after photo-
bleaching a rectangular area in a thin film was given by De-
schout et al. (2010):

F(x,y, t)

F0(x,y)
=

[

1 −
K0

4
·

(

erf

(

x + lx
2√

r2 + 4Dt

)

−erf

(

x − lx
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r2 + 4Dt

))

·

(

erf

(

y + ly
2√

r2 + 4Dt

)

−erf

(

y − ly
2√

r2 + 4Dt

))]

, (2)

where F(x,y, t) is the fluorescence intensity at position x

and y after a time t , F0(x,y) corresponds to the initial in-
tensity at position x and y before photobleaching, K0 is re-
lated to the initial fraction of photobleached molecules in the
bleach region, and lx and ly correspond to the size (length) of
the bleach region in the x and y directions. The parameter r

represents the resolution of the microscope, t is the time after
photobleaching, and D is the diffusion coefficient.

The entire images (128×128 pixels following downsizing)
collected during an rFRAP experiment were fit to Eq. (2) us-
ing a MATLAB script (The Mathworks, Natick, MA, USA),
with the terms K0 and r2 + 4Dt left as free parameters. An
additional normalization factor was also left as a free param-
eter and returned a value close to 1, since images recorded af-
ter photobleaching were normalized to the pre-bleach image
before fitting. To determine the bleach width (lx , ly), Eq. (2)
was fit to the first five images recorded after photobleaching
a film with the bleach width (lx, ly) left as a free parameter.
The bleach width returned by the fit to the first five frames
was then used as input in Eq. (2) to analyze the full set of
images.

From the fitting procedure, a value for r2 +4Dt was deter-
mined for each image and plotted as a function of time after
photobleaching. A straight line was then fit to the r2 + 4Dt

vs. t plot, and from the slope of the line D was calculated. An
example is shown in Fig. S5. As the intensity of the fluores-
cence in the bleached region recovers, the noise in the data
becomes large relative to the difference in fluorescence in-
tensity between the bleached and non-bleached regions (i.e.,
signal). To ensure that we only use data with a reasonable
signal-to-noise ratio, images were not used if this signal was
less than 3 times the standard deviation of the noise.

Figure S6 shows a cross section of the fluorescence in-
tensity along the x direction from the data in Fig. S4. Fig-
ure S6 is given only to visualize the fit of the equation to the
data, and the cross-sectional fit was not used to determine
diffusion coefficients. As mentioned above, the entire images
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(128 × 128 pixels following downsizing) were used to deter-
mine diffusion coefficients. To generate the cross-sectional
view, at each position x, the measured fluorescence inten-
sity is averaged over the width of the photobleached region
in the y direction (black squares). Also included in Fig. S6
are cross-sectional views of the calculated fluorescence in-
tensity along the x direction generated from the fitting pro-
cedure (solid red lines). To generate the line, Eq. (2) was first
fit to the images. The resulting fit was then averaged over
the width of the photobleached region in the y direction. The
good agreement between the measured cross section and the
predicted cross section illustrates that Eq. (2) describes the
rFRAP data well.

Equation (2) assumes that there is no net diffusion in the
axial direction (i.e., z direction). Deschout et al. (2010) have
shown that Eq. (2) gives accurate diffusion coefficients when
the numerical aperture of the microscope is low (≤ 0.45) and
the thickness of the fluorescent films is small (≤ 120 µm),
which is consistent with the numerical aperture of 0.30 and
film thickness of 30–50 µm used here.

3 Results and discussion

3.1 Diffusion coefficients of organic molecules in citric

acid, sorbitol, and sucrose–citric acid matrices

The experimental diffusion coefficients of organic molecules
in matrices of citric acid, sorbitol, and sucrose–citric acid as
a function of water activity (aw) are shown in Fig. 1 (and
listed in Tables S2–S5). The experimental diffusion coeffi-
cients depend strongly on aw for all three proxies of SOA.
As aw increases from 0.23 (0.14 in one case) to 0.86, diffu-
sion coefficients increase by between 5 and 8 orders of mag-
nitude. This dependence on aw arises from the plasticizing
influence of water on these matrices; as aw increases (and
hence the water content increases) the viscosity decreases
(Koop et al., 2011). In addition, the experimental diffusion
coefficients varied significantly from matrix to matrix at the
same aw (Fig. 1). As an example, at aw = 0.23 the diffusion
coefficient of rhodamine 6G is about 4 orders of magnitude
larger in citric acid compared to the sucrose–citric acid mix-
ture.

We also considered the relationship between log(D) −
log(kT /6πRH) and log (η), a comparison that allows for
the identification of deviations from the Stokes–Einstein re-
lation (Fig. 2). By plotting log(D) − log(kT /6πRH), we ac-
count for differences in the hydrodynamic radii of diffusing
species and small differences in temperature (within a range
of 6 K). The viscosity corresponding to each diffusion co-
efficient was determined from relationships between aw and
viscosity developed from literature data (Figs. S7–S9). The
solid line in Fig. 2 corresponds to the relationship between
log(D) − log(kT /6πRH) and log (η) if the Stokes–Einstein
relation (Eq. 1) is obeyed. Figure 2 shows that the diffu-

Figure 1. Experimental diffusion coefficients of fluorescent organic
molecules in various organic matrices as a function of water activ-
ity (aw). The x error bars represent the uncertainty in the measured
aw (±0.025) and y error bars correspond to 2 times the standard
deviation in the diffusion measurements. Each data point is the av-
erage of a minimum of four measurements. Indicated in the legend
are the fluorescent organic molecules studied and the corresponding
matrices.

sion coefficients of the fluorescent organic molecules depend
strongly on viscosity, with the diffusion coefficients varying
by approximately 8 orders of magnitude as viscosity varied
by 8 orders of magnitude. If the uncertainties of the mea-
surements are considered, all the data points except three
(89 % of the data) are consistent with predictions from the
Stokes–Einstein relation (meaning that the error bars on the
measurements overlap the solid line in Fig. 2) over 8 orders
of magnitude of change in diffusion coefficients. This find-
ing is remarkable considering the assumptions inherent in the
Stokes–Einstein relation (e.g., the diffusing species is a hard
sphere that experiences the fluid as a homogeneous contin-
uum and no slip at the boundary of the diffusing species).

3.2 Comparison with relevant literature data

Previous studies have used sucrose to evaluate the ability
of the Stokes–Einstein relation to predict the diffusion co-
efficients of organic molecules in SOA (Bastelberger et al.,
2017; Chenyakin et al., 2017; Price et al., 2016). In addi-
tion, a recent study (Ullmann et al., 2019) used SOA gener-
ated in the laboratory from the oxidation of limonene, sub-
sequently exposed to NH3(g) (i.e., brown limonene SOA), to
evaluate the Stokes–Einstein relation. Although studies with
SOA generated in the laboratory are especially interesting,
that previous study was limited to relatively low viscosities
(≤ 102 Pa s), whereby a breakdown of the Stokes–Einstein
relation is less expected. In Fig. 3a, we have combined the re-
sults from the current study (i.e., the results from Fig. 2) with
previous studies of diffusion and viscosity in sucrose and
brown limonene SOA (Champion et al., 1997; Chenyakin et
al., 2017; Price et al., 2016; Rampp et al., 2000; Ullmann et
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Figure 2. Plot of log(D) − log(kT /6πRH) as a function of log (η)
for the diffusion coefficients shown in Fig. 1. Viscosities (η) were
determined from relationships between viscosity and aw (Figs. S7–
S9). T corresponds to the experimental temperature and RH cor-
responds to the radius of each diffusing species (see Table S6).
The x error bars were calculated using the uncertainty in aw at
which the samples were conditioned (±0.025) and uncertainties
in the viscosity–aw parameterizations. The y error bars represent
2 times the standard deviation of the experimental diffusion coeffi-
cients. The black line represents the relationship between log(D)−
log(kT /6πRH) and log (η) predicted by the Stokes–Einstein rela-
tion (slope = −1). Shown at the bottom of the figure are various
substances and their approximate room temperature viscosities to
provide context, as in Koop et al. (2011). The image of tar pitch is
part of an image from the pitch drop experiment (image courtesy of
Wikimedia Commons, GNU Free Documentation License, Univer-
sity of Queensland, John Mainstone).

al., 2019). To be consistent with the current study, we have
not included data in Fig. 3a if the diffusion coefficients and
viscosities were measured at, or calculated using, tempera-
tures outside the range of 292–298 K and if the radius of the
diffusing molecule was smaller than the radius of the organic
molecules in the fluid matrix. Previous work has shown that
the Stokes–Einstein relation is not applicable when the radius
of the diffusing molecule is less than the radius of the ma-
trix molecules, and those cases are beyond the scope of this
work (Bastelberger et al., 2017; Davies and Wilson, 2016;
Marshall et al., 2016; Power et al., 2013; Price et al., 2016;
Shiraiwa et al., 2011). Additional details for the data shown
in Fig. 3a are included in Sect. S2 and Table S6.

Based on Fig. 3a the diffusion coefficients of the organic
molecules in sucrose matrices and matrices consisting of
SOA generated in the laboratory depend strongly on viscos-
ity, similar to the results shown in Fig. 2. In addition, almost
all the data agree with the Stokes–Einstein relation (solid

Figure 3. (a) Plot of log(D) − log(kT /6πRH) as a function of
log (η) for experimental diffusion coefficients reported in this
work and literature data. Indicated in the legend are the diffus-
ing organic molecules studied and the corresponding matrices.
T corresponds to the experimental temperature of each diffusion
coefficient and RH corresponds to the radius of each diffusing
species (Sect. S2 and Table S6). The symbols represent experi-
mental data points. The solid line represents the relationship be-
tween log(D)−log(kT /6πRH) and log (η) predicted by the Stokes–
Einstein relation, while the dashed line represents the relationship
between log(D) − log(kT /6πRH) and log (η) predicted by a frac-
tional Stokes–Einstein relation with a slope of −0.93 and crossover
viscosity of 10−3 Pa s. Panels (b) and (c) are plots of the differ-
ences (i.e., residuals) between experimental and predicted values
of log(D)− log(kT /6πRH) using the Stokes–Einstein relation and
the fractional Stokes–Einstein relation, respectively. The sum of
squared residuals for the Stokes–Einstein relation is 19.7 and the
sum of squared residuals for the fractional Stokes–Einstein relation
is 10.8.

line in Fig. 3a) within a factor of 10. This finding is in stark
contrast to the diffusion of water in organic–water mixtures,
wherein much larger deviations between experimental and
predicted diffusion coefficients were observed over the same
viscosity range (Davies and Wilson, 2016; Marshall et al.,
2016; Price et al., 2016).

In Fig. 3b, we show the differences between the experi-
mental values and the solid line in Fig. 3a as a function of
viscosity. If the Stokes–Einstein relation describes the data
well, these differences (i.e., residuals) should be scattered
symmetrically about zero, while the magnitude of the residu-
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als should be less than or equal to the uncertainty in the mea-
surements. However, the residuals are skewed to be positive,
especially as viscosity increases, with experimental diffusion
faster than expected based on the Stokes–Einstein relation.
Figure 3b suggests that the Stokes–Einstein relation may not
be the optimal model for predicting diffusion coefficients in
SOA, particularly at high viscosities.

3.3 Fractional Stokes–Einstein relation

When deviation from the Stokes–Einstein relation has been
observed in the past, a fractional Stokes–Einstein relation
(D ∝ 1/ηξ , where ξ is an empirical fit parameter) has of-
ten been used to quantify the relationship between diffu-
sion and viscosity. For example, Price et al. (2016) showed
that a fractional Stokes–Einstein relation can accurately rep-
resent the diffusion of sucrose in a sucrose matrix over a
wide range of viscosities (from roughly 100–106 Pa s) with
ξ = 0.90. Building on that work, the data in Fig. 3a were fit
to the following fractional Stokes–Einstein relation:

D = Dc

(

ηc

η

)ξ

, (3)

where ξ is an empirical fit parameter, ηc is the crossover
viscosity, and Dc is the crossover diffusion coefficient. The
crossover viscosity is the viscosity at which the Stokes–
Einstein relation and the fractional Stokes–Einstein relation
predict the same diffusion coefficient. Based on the data in
Fig. 3 we have chosen ηc = 10−3 Pa s. The crossover diffu-
sion coefficient corresponds to the diffusion coefficient at ηc
(which can be calculated with the Stokes–Einstein relation).
The value of ξ is determined as the slope of the dashed line
in Fig. 3a. The best fit to the data (represented by the dashed
line in Fig. 3a) resulted in a ξ value of 0.93. Each data point
was weighted equally when performing the fitting.

In Fig. 3c, we plotted the difference between the exper-
imental values shown in Fig. 3a and the predicted values
using the fractional Stokes–Einstein relation (dashed line in
Fig. 3a). These residuals are more symmetrically scattered
about zero compared to the residuals plotted in Fig. 3b. In
addition, the sum of squared residuals (r2) in Fig. 3c was less
than the sum of squared residuals in Fig. 3b (r2 = 10.8 com-
pared to 19.7). Beyond the sum of squared residuals test we
have performed a reduced chi-squared (χ2) test, which takes
into account the extra fitting variable present in the fractional
Stokes–Einstein relation. Assuming a variance of 0.25, the
reduced χ2 value is 1.24 for the Stokes–Einstein relation and
0.67 for the fractional Stokes–Einstein relation. This infor-
mation suggests that the fractional Stokes–Einstein relation
with an exponent value of ξ = 0.93 may be the better model
for predicting the diffusion coefficients of organic molecules
in SOA compared to the traditional Stokes–Einstein rela-
tion. This is in close agreement with the findings of Price
et al. (2016), who showed that the diffusion of sucrose in
a sucrose–water matrix could be modeled using a fractional

Figure 4. Mixing times of organic molecules within a 200 nm par-
ticle as a function of viscosity using the Stokes–Einstein relation
(black line) and a fractional Stokes–Einstein relation (red line). The
dashed lines indicate that the relations were extrapolated to viscosi-
ties beyond the tested range of viscosities (≥ 4 × 106 Pa s).

Stokes–Einstein relation with ξ = 0.90 over a large range in
viscosity. The new fractional Stokes–Einstein relation, which
builds on the work of Price et al. (2016), was derived us-
ing diffusion data of several large organic molecules in sev-
eral types of organic–water matrices and thus demonstrates a
broader utility of the fractional Stokes–Einstein relation.

For the case of large diffusing molecules such as those in-
cluded in this work (i.e., the radius of the diffusing molecule
is equal to or larger than the radius of the organic molecules
in the matrix), we do not observe a strong dependence of ξ

on the size or nature of the diffusing molecule. For smaller
molecules, ξ is expected to change significantly. For exam-
ple, Price et al. (2016) showed that ξ = 0.57 for the diffu-
sion of water in a sucrose–water matrix, and Pollack (1981)
showed that ξ = 0.63 for the diffusion of xenon in a sucrose–
water matrix. The development of a relationship between ξ

and the size of small diffusing molecules is beyond the scope
of this work.

3.4 Implications for atmospheric mixing times

To investigate the atmospheric implications of these results,
we considered the mixing times of organic molecules within
SOA in the atmosphere as a function of viscosity using
both the Stokes–Einstein relation (Eq. 1) and the fractional
Stokes–Einstein relation (Eq. 3) with ξ = 0.93. Mixing times
were calculated with the following equation (Seinfeld and
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Figure 5. Mixing times (in hours) of organic molecules in 200 nm SOA particles at (a) the surface, (b) 850 hPa or ∼ 1.4 km of altitude,
and (c) 700 hPa or ∼ 3.2 km of altitude using diffusion coefficients calculated with the Stokes–Einstein relation (solid black lines) and the
fractional Stokes–Einstein relation (dashed black lines). A 1 h mixing time, which is often assumed in chemical transport models, is also
indicated in each figure with a horizontal dotted line.

Pandis, 2006; Shiraiwa et al., 2011):

τmix =
d2

p

4π2D
, (4)

where τmix is the characteristic mixing time, dp is the SOA
particle diameter, and D is the diffusion coefficient. τmix cor-
responds to the time at which the concentration of the dif-
fusing molecules at the center of the particle deviates by less
than a factor of 1/e from the equilibrium concentration. We
assumed a dp of 200 nm, which is roughly the median diam-
eter in the volume distribution of ambient SOA (Martin et
al., 2010; Pöschl et al., 2010; Riipinen et al., 2011). We as-
sumed a value of 0.38 nm for RH based on literature values
for molecular weight (175 g mol−1; Huff Hartz et al., 2005)
and the density (1.3 g cm−3; Chen and Hopke, 2009; Saathoff
et al., 2009) of SOA molecules and assuming a spherical
symmetry of the diffusing species.

Figure 4 shows the calculated mixing times of 200 nm par-
ticles as a function of the viscosity of the matrix. The mix-
ing time of 1 h is highlighted, since when calculating the
growth and evaporation of SOA and the long-range trans-
port of pollutants using chemical transport models, a mixing
time of < 1 h for organic molecules within SOA is often as-
sumed (Hallquist et al., 2009). At a viscosity of 5 × 106 Pa s,
the mixing time is > 1 h based on the Stokes–Einstein rela-
tion but remains < 1 h based on the fractional Stokes–Einstein
relation. Furthermore, at high viscosities > 5 × 106 Pa s, the
mixing times predicted with the traditional Stokes–Einstein
relation are at least a factor of 5 greater than those predicted
with the fractional Stokes–Einstein relation.

Recently, Shiraiwa et al. (2017) estimated mixing times of
organic molecules in SOA particles in the global atmosphere
using the global chemistry climate model EMAC (Jöckel et
al., 2006) and the organic module ORACLE (Tsimpidi et
al., 2014). Glass transition temperatures of SOA compounds
were predicted based on molar mass and the O : C ratio of

SOA components, followed by predictions of viscosity. Dif-
fusion coefficients and mixing times were predicted using
the Stokes–Einstein relation. To further explore the impli-
cations of our results, we calculated mixing times of or-
ganic molecules in SOA globally using the same approach
as Shiraiwa et al. (2017) and compared predictions using the
Stokes–Einstein relation and predictions using the fractional
Stokes–Einstein relation with ξ = 0.93. Shown in Fig. 5 are
the results from these calculations. At all latitudes at the
surface, the mixing times are well below the 1 h often as-
sumed in chemical transport models regardless of whether
the Stokes–Einstein relation or the fractional Stokes–Einstein
relation is used (Fig. 5a). On the other hand, at an altitude
of approximately 1.4 km, the latitudes at which the mix-
ing times exceed 1 h will depend on whether the Stokes–
Einstein relation or fractional Stokes–Einstein relation is
used (Fig. 5b). At an altitude of 3.2 km the mixing times
are well above the 1 h cutoff regardless of what relation is
used, and the Stokes–Einstein relation can overpredict mix-
ing times of SOA particles by as much as 1 order of mag-
nitude compared to the fractional Stokes–Einstein relation
(Fig. 5c). A caveat is that the predictions at 3.2 km are based
on viscosities higher than the viscosities studied in the cur-
rent work. Hence, at 3.2 km the Stokes–Einstein and frac-
tional Stokes–Einstein relations are being used outside the
viscosity range tested here. Although experimentally chal-
lenging, additional studies are recommended to determine
if the fractional Stokes–Einstein relation with ξ = 0.93 is
able to accurately predict the diffusion coefficients of organic
molecules in proxies of SOA at viscosities higher than inves-
tigated in the current study.

4 Summary and conclusions

We report experimental diffusion coefficients of fluorescent
organic molecules in a variety of SOA proxies. The reported
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diffusion coefficients varied by about 8 orders of magnitude
as the water activity in the SOA proxies varied from 0.23
(0.14 in one case) to 0.86. By combining the new diffusion
coefficients with literature data, we have shown that, in al-
most all cases, the Stokes–Einstein relation correctly predicts
the diffusion coefficients of organic molecules in SOA prox-
ies within a factor of 10. This finding is in stark contrast to
the diffusion of water in SOA proxies, whereby much larger
deviations between experimental and predicted diffusion co-
efficients have been observed over the same viscosity range.
Even though the Stokes–Einstein relation correctly predicts
the diffusion of organic molecules in the majority of cases
within a factor of 10, both a sum of squared residuals analysis
and a reduced chi-squared test show that a fractional Stokes–
Einstein relation with an exponent of ξ = 0.93 is a better
model for predicting diffusion coefficients in SOA proxies
for the range of viscosities included in this study. This is con-
sistent with earlier work that showed the fractional Stokes–
Einstein relation is able to reproduce experimental diffusion
coefficients of sucrose in sucrose–water matrices. The frac-
tional Stokes–Einstein relation predicts faster diffusion coef-
ficients and therefore shorter mixing times of SOA particles
in the atmosphere. At an altitude of ∼ 3.2 km, the difference
in mixing times predicted by the two relations is as much as
1 order of magnitude.
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