000866831 001__ 866831
000866831 005__ 20240712101054.0
000866831 0247_ $$2doi$$a10.5194/acp-19-7397-2019
000866831 0247_ $$2ISSN$$a1680-7316
000866831 0247_ $$2ISSN$$a1680-7324
000866831 0247_ $$2Handle$$a2128/23479
000866831 0247_ $$2altmetric$$aaltmetric:61502766
000866831 0247_ $$2WOS$$aWOS:000470323500006
000866831 037__ $$aFZJ-2019-05894
000866831 082__ $$a550
000866831 1001_ $$00000-0002-8425-8150$$aKlingmüller, Klaus$$b0$$eCorresponding author
000866831 245__ $$aDirect radiative effect of dust–pollution interactions
000866831 260__ $$aKatlenburg-Lindau$$bEGU$$c2019
000866831 3367_ $$2DRIVER$$aarticle
000866831 3367_ $$2DataCite$$aOutput Types/Journal article
000866831 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574791883_2231
000866831 3367_ $$2BibTeX$$aARTICLE
000866831 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866831 3367_ $$00$$2EndNote$$aJournal Article
000866831 520__ $$aThe chemical ageing of aeolian dust, through interactions with air pollution, affects the optical and hygroscopic properties of the mineral particles and hence their atmospheric residence time and climate forcing. Conversely, the chemical composition of the dust particles and their role as coagulation partners impact the abundance of particulate air pollution. This results in a change in the aerosol direct radiative effect that we interpret as an anthropogenic radiative forcing associated with mineral dust–pollution interactions. Using the ECHAM/MESSy atmospheric chemistry climate model (EMAC), which combines the Modular Earth Submodel System (MESSy) with the European Centre Hamburg (ECHAM) climate model, including a detailed parametrisation of ageing processes and an emission scheme accounting for the chemical composition of desert soils, we study the direct radiative forcing globally and regionally, considering solar and terrestrial radiation. Our results indicate positive and negative forcings, depending on the region. The predominantly negative forcing at the top of the atmosphere over large parts of the dust belt, from West Africa to East Asia, attains a maximum of about −2 W m−2 south of the Sahel, in contrast to a positive forcing over India. Globally averaged, these forcings partially counterbalance, resulting in a net negative forcing of −0.05 W m−2, which nevertheless represents a considerable fraction (40 %) of the total dust forcing.
000866831 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000866831 588__ $$aDataset connected to CrossRef
000866831 7001_ $$00000-0001-6307-3846$$aLelieveld, Jos$$b1
000866831 7001_ $$0P:(DE-Juel1)176592$$aKarydis, Vlassis A.$$b2$$ufzj
000866831 7001_ $$00000-0001-9033-4925$$aStenchikov, Georgiy L.$$b3
000866831 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-19-7397-2019$$gVol. 19, no. 11, p. 7397 - 7408$$n11$$p7397 - 7408$$tAtmospheric chemistry and physics$$v19$$x1680-7324$$y2019
000866831 8564_ $$uhttps://juser.fz-juelich.de/record/866831/files/acp-19-7397-2019.pdf$$yOpenAccess
000866831 8564_ $$uhttps://juser.fz-juelich.de/record/866831/files/acp-19-7397-2019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866831 909CO $$ooai:juser.fz-juelich.de:866831$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000866831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176592$$aForschungszentrum Jülich$$b2$$kFZJ
000866831 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000866831 9141_ $$y2019
000866831 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866831 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866831 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866831 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000866831 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000866831 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000866831 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866831 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866831 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866831 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866831 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000866831 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000866831 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866831 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866831 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866831 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000866831 9801_ $$aFullTexts
000866831 980__ $$ajournal
000866831 980__ $$aVDB
000866831 980__ $$aUNRESTRICTED
000866831 980__ $$aI:(DE-Juel1)IEK-8-20101013
000866831 981__ $$aI:(DE-Juel1)ICE-3-20101013