000866831 001__ 866831 000866831 005__ 20240712101054.0 000866831 0247_ $$2doi$$a10.5194/acp-19-7397-2019 000866831 0247_ $$2ISSN$$a1680-7316 000866831 0247_ $$2ISSN$$a1680-7324 000866831 0247_ $$2Handle$$a2128/23479 000866831 0247_ $$2altmetric$$aaltmetric:61502766 000866831 0247_ $$2WOS$$aWOS:000470323500006 000866831 037__ $$aFZJ-2019-05894 000866831 082__ $$a550 000866831 1001_ $$00000-0002-8425-8150$$aKlingmüller, Klaus$$b0$$eCorresponding author 000866831 245__ $$aDirect radiative effect of dust–pollution interactions 000866831 260__ $$aKatlenburg-Lindau$$bEGU$$c2019 000866831 3367_ $$2DRIVER$$aarticle 000866831 3367_ $$2DataCite$$aOutput Types/Journal article 000866831 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574791883_2231 000866831 3367_ $$2BibTeX$$aARTICLE 000866831 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000866831 3367_ $$00$$2EndNote$$aJournal Article 000866831 520__ $$aThe chemical ageing of aeolian dust, through interactions with air pollution, affects the optical and hygroscopic properties of the mineral particles and hence their atmospheric residence time and climate forcing. Conversely, the chemical composition of the dust particles and their role as coagulation partners impact the abundance of particulate air pollution. This results in a change in the aerosol direct radiative effect that we interpret as an anthropogenic radiative forcing associated with mineral dust–pollution interactions. Using the ECHAM/MESSy atmospheric chemistry climate model (EMAC), which combines the Modular Earth Submodel System (MESSy) with the European Centre Hamburg (ECHAM) climate model, including a detailed parametrisation of ageing processes and an emission scheme accounting for the chemical composition of desert soils, we study the direct radiative forcing globally and regionally, considering solar and terrestrial radiation. Our results indicate positive and negative forcings, depending on the region. The predominantly negative forcing at the top of the atmosphere over large parts of the dust belt, from West Africa to East Asia, attains a maximum of about −2 W m−2 south of the Sahel, in contrast to a positive forcing over India. Globally averaged, these forcings partially counterbalance, resulting in a net negative forcing of −0.05 W m−2, which nevertheless represents a considerable fraction (40 %) of the total dust forcing. 000866831 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0 000866831 588__ $$aDataset connected to CrossRef 000866831 7001_ $$00000-0001-6307-3846$$aLelieveld, Jos$$b1 000866831 7001_ $$0P:(DE-Juel1)176592$$aKarydis, Vlassis A.$$b2$$ufzj 000866831 7001_ $$00000-0001-9033-4925$$aStenchikov, Georgiy L.$$b3 000866831 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-19-7397-2019$$gVol. 19, no. 11, p. 7397 - 7408$$n11$$p7397 - 7408$$tAtmospheric chemistry and physics$$v19$$x1680-7324$$y2019 000866831 8564_ $$uhttps://juser.fz-juelich.de/record/866831/files/acp-19-7397-2019.pdf$$yOpenAccess 000866831 8564_ $$uhttps://juser.fz-juelich.de/record/866831/files/acp-19-7397-2019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000866831 909CO $$ooai:juser.fz-juelich.de:866831$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire 000866831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176592$$aForschungszentrum Jülich$$b2$$kFZJ 000866831 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0 000866831 9141_ $$y2019 000866831 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000866831 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000866831 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000866831 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017 000866831 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000866831 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000866831 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000866831 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000866831 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000866831 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000866831 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review 000866831 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017 000866831 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000866831 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000866831 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000866831 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0 000866831 9801_ $$aFullTexts 000866831 980__ $$ajournal 000866831 980__ $$aVDB 000866831 980__ $$aUNRESTRICTED 000866831 980__ $$aI:(DE-Juel1)IEK-8-20101013 000866831 981__ $$aI:(DE-Juel1)ICE-3-20101013