000866875 001__ 866875
000866875 005__ 20210130003649.0
000866875 0247_ $$2doi$$a10.1093/treephys/tpz019
000866875 0247_ $$2ISSN$$a0829-318X
000866875 0247_ $$2ISSN$$a1758-4469
000866875 0247_ $$2altmetric$$aaltmetric:57477612
000866875 0247_ $$2pmid$$apmid:30896019
000866875 0247_ $$2WOS$$aWOS:000491257600009
000866875 037__ $$aFZJ-2019-05935
000866875 041__ $$aEnglish
000866875 082__ $$a580
000866875 1001_ $$0P:(DE-HGF)0$$aCopini, Paul$$b0
000866875 245__ $$aMagnetic resonance imaging suggests functional role of previous year vessels and fibres in ring-porous sap flow resumption
000866875 260__ $$aVictoria, BC$$bHeron$$c2019
000866875 3367_ $$2DRIVER$$aarticle
000866875 3367_ $$2DataCite$$aOutput Types/Journal article
000866875 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576509662_476
000866875 3367_ $$2BibTeX$$aARTICLE
000866875 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866875 3367_ $$00$$2EndNote$$aJournal Article
000866875 520__ $$aReactivation of axial water flow in ring-porous species is a complex process related to stem water content and developmental stage of both earlywood-vessel and leaf formation. Yet empirical evidence with non-destructive methods on the dynamics of water flow resumption in relation to these mechanisms is lacking. Here we combined in vivo magnetic resonance imaging and wood-anatomical observations to monitor the dynamic changes in stem water content and flow during spring reactivation in 4-year-old pedunculate oaks (Quercus robur L.) saplings. We found that previous year latewood vessels and current year developing earlywood vessels form a functional unit for water flow during growth resumption. During spring reactivation, water flow shifted from latewood towards the new earlywood, paralleling the formation of earlywood vessels and leaves. At leaves' full expansion, volumetric water content of previous rings drastically decreased due to the near-absence of water in fibre tissue. We conclude (i) that in ring-porous oak, latewood vessels play an important hydraulic role for bridging the transition between old and new water-conducting vessels and (ii) that fibre and parenchyma provides a place for water storage.
000866875 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000866875 588__ $$aDataset connected to CrossRef
000866875 7001_ $$0P:(DE-HGF)0$$aVergeldt, Frank J$$b1
000866875 7001_ $$0P:(DE-HGF)0$$aFonti, Patrick$$b2$$eCorresponding author
000866875 7001_ $$0P:(DE-HGF)0$$aSass-Klaassen, Ute$$b3
000866875 7001_ $$0P:(DE-HGF)0$$aden Ouden, Jan$$b4
000866875 7001_ $$0P:(DE-HGF)0$$aSterck, Frank$$b5
000866875 7001_ $$0P:(DE-HGF)0$$aDecuyper, Mathieu$$b6
000866875 7001_ $$0P:(DE-HGF)0$$aGerkema, Edo$$b7
000866875 7001_ $$0P:(DE-Juel1)129422$$aWindt, Carel$$b8$$ufzj
000866875 7001_ $$0P:(DE-HGF)0$$aVan As, Henk$$b9
000866875 773__ $$0PERI:(DE-600)1473475-8$$a10.1093/treephys/tpz019$$gVol. 39, no. 6, p. 1009 - 1018$$n6$$p1009 - 1018$$tTree physiology$$v39$$x0829-318X$$y2019
000866875 8564_ $$uhttps://juser.fz-juelich.de/record/866875/files/tpz019.pdf$$yRestricted
000866875 8564_ $$uhttps://juser.fz-juelich.de/record/866875/files/tpz019.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866875 909CO $$ooai:juser.fz-juelich.de:866875$$pVDB
000866875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129422$$aForschungszentrum Jülich$$b8$$kFZJ
000866875 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000866875 9141_ $$y2019
000866875 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866875 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866875 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866875 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000866875 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTREE PHYSIOL : 2017
000866875 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866875 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866875 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866875 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866875 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866875 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866875 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866875 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000866875 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866875 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866875 920__ $$lyes
000866875 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000866875 980__ $$ajournal
000866875 980__ $$aVDB
000866875 980__ $$aI:(DE-Juel1)IBG-2-20101118
000866875 980__ $$aUNRESTRICTED