000866898 001__ 866898
000866898 005__ 20240712113056.0
000866898 0247_ $$2doi$$a10.1016/j.jpowsour.2017.10.003
000866898 0247_ $$2ISSN$$a0378-7753
000866898 0247_ $$2ISSN$$a1873-2755
000866898 0247_ $$2Handle$$a2128/24278
000866898 0247_ $$2WOS$$aWOS:000413799900015
000866898 037__ $$aFZJ-2019-05958
000866898 082__ $$a620
000866898 1001_ $$0P:(DE-HGF)0$$aLewerenz, Meinert$$b0$$eCorresponding author
000866898 245__ $$aPost-mortem analysis on LiFePO 4 |Graphite cells describing the evolution & composition of covering layer on anode and their impact on cell performance
000866898 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000866898 3367_ $$2DRIVER$$aarticle
000866898 3367_ $$2DataCite$$aOutput Types/Journal article
000866898 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581003091_22023
000866898 3367_ $$2BibTeX$$aARTICLE
000866898 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866898 3367_ $$00$$2EndNote$$aJournal Article
000866898 520__ $$aDuring cyclic aging of lithium-ion batteries the formation of a μm-thick covering layer on top of the anode facing the separator is found on top of the anode. In this work several post-mortem analyses of cyclic aged cylindrical LFP|Graphite cells are evaluated to give a detailed characterization of the covering layer and to find possible causes for the evolution of such a layer. The analyses of the layer with different methods return that it consists to high percentage of plated active lithium, deposited Fe and products of a solid electrolyte interphase (SEI). The deposition is located mainly in the center of the cell symmetrical to the coating direction. The origin of these depositions is assumed in locally overcharged particles, Fe deposition or inhomogeneous distribution of capacity density. As a secondary effect the deposition on one side increases the thickness locally; thereafter a pressure-induced overcharging due to charge agglomeration of the back side of the anode occurs. Finally a compact and dense covering layer in a late state of aging leads to deactivation of the covered parts of the anode and cathode due to suppressed lithium-ion conductivity. This leads to increasing slope of capacity fade and increase of internal resistance.
000866898 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000866898 588__ $$aDataset connected to CrossRef
000866898 7001_ $$0P:(DE-HGF)0$$aWarnecke, Alexander$$b1
000866898 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b2$$ufzj
000866898 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2017.10.003$$gVol. 369, p. 122 - 132$$p122 - 132$$tJournal of power sources$$v369$$x0378-7753$$y2017
000866898 8564_ $$uhttps://juser.fz-juelich.de/record/866898/files/160901_mlw%20CoveringLayer_final.pdf$$yPublished on 2017-10-09. Available in OpenAccess from 2019-10-09.$$zStatID:(DE-HGF)0510
000866898 8564_ $$uhttps://juser.fz-juelich.de/record/866898/files/JournalVersion.pdf$$yRestricted
000866898 8564_ $$uhttps://juser.fz-juelich.de/record/866898/files/160901_mlw%20CoveringLayer_final.pdf?subformat=pdfa$$xpdfa$$yPublished on 2017-10-09. Available in OpenAccess from 2019-10-09.$$zStatID:(DE-HGF)0510
000866898 8564_ $$uhttps://juser.fz-juelich.de/record/866898/files/JournalVersion.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866898 909CO $$ooai:juser.fz-juelich.de:866898$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866898 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000866898 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000866898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b2$$kFZJ
000866898 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000866898 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866898 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866898 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866898 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866898 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2017
000866898 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2017
000866898 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866898 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866898 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866898 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866898 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866898 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866898 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866898 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866898 920__ $$lyes
000866898 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000866898 9801_ $$aFullTexts
000866898 980__ $$ajournal
000866898 980__ $$aVDB
000866898 980__ $$aUNRESTRICTED
000866898 980__ $$aI:(DE-Juel1)IEK-12-20141217
000866898 981__ $$aI:(DE-Juel1)IMD-4-20141217