000866900 001__ 866900
000866900 005__ 20240712113118.0
000866900 0247_ $$2doi$$a10.1016/j.jpowsour.2017.03.136
000866900 0247_ $$2ISSN$$a0378-7753
000866900 0247_ $$2ISSN$$a1873-2755
000866900 0247_ $$2Handle$$a2128/24280
000866900 0247_ $$2WOS$$aWOS:000401208100017
000866900 037__ $$aFZJ-2019-05960
000866900 082__ $$a620
000866900 1001_ $$0P:(DE-HGF)0$$aLewerenz, Meinert$$b0$$eCorresponding author
000866900 245__ $$aNew method evaluating currents keeping the voltage constant for fast and highly resolved measurement of Arrhenius relation and capacity fade
000866900 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000866900 3367_ $$2DRIVER$$aarticle
000866900 3367_ $$2DataCite$$aOutput Types/Journal article
000866900 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581003320_22020
000866900 3367_ $$2BibTeX$$aARTICLE
000866900 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866900 3367_ $$00$$2EndNote$$aJournal Article
000866900 520__ $$aThe evaluation of floating currents is a powerful method to characterize capacity fade induced by calendaric aging and enables a highly resolved representation of the Arrhenius relation. The test arrangement is simple and could constitute a cheap alternative to state-of-the-art calendaric aging tests including check-up tests. Therefore the currents to maintain a constant voltage are evaluated. This method is validated by analyzing nine cylindrical 8 Ah LiFePO4|Graphite battery cells during calendaric aging at 25 °C, 40 °C and 60 °C at 3.6 V (100% SOC). The 3.6 V are kept by applying constant voltage while the floating currents are logged. The floating currents correlate with the rate of capacity loss measured during capacity tests. The floating currents reveal to be rather constant at 25 °C, linearly increasing at 40 °C and decreasing from a higher level at 60 °C. Additional tests with three test cells, with the temperature rising from 40 to 60 °C in steps of 5 K, exhibit non-constant currents starting from 50 °C on with high variations amongst the tested cells. Once stored above 50 °C, the cells exhibit increased floating currents compared to the measurement at the same temperature before exceeding 50 °C.
000866900 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000866900 588__ $$aDataset connected to CrossRef
000866900 7001_ $$0P:(DE-Juel1)166431$$aKäbitz, Stefan$$b1
000866900 7001_ $$0P:(DE-HGF)0$$aKnips, Marcus$$b2
000866900 7001_ $$0P:(DE-HGF)0$$aMünnix, Jens$$b3
000866900 7001_ $$0P:(DE-HGF)0$$aSchmalstieg, Johannes$$b4
000866900 7001_ $$0P:(DE-HGF)0$$aWarnecke, Alexander$$b5
000866900 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b6$$ufzj
000866900 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2017.03.136$$gVol. 353, p. 144 - 151$$p144 - 151$$tJournal of power sources$$v353$$x0378-7753$$y2017
000866900 8564_ $$uhttps://juser.fz-juelich.de/record/866900/files/160708_mlw%20Floattestergebnisse_Accepted2.pdf$$yPublished on 2017-04-07. Available in OpenAccess from 2019-04-07.$$zStatID:(DE-HGF)0510
000866900 8564_ $$uhttps://juser.fz-juelich.de/record/866900/files/mlw_FloatingCurrents.pdf$$yRestricted
000866900 8564_ $$uhttps://juser.fz-juelich.de/record/866900/files/160708_mlw%20Floattestergebnisse_Accepted2.pdf?subformat=pdfa$$xpdfa$$yPublished on 2017-04-07. Available in OpenAccess from 2019-04-07.$$zStatID:(DE-HGF)0510
000866900 8564_ $$uhttps://juser.fz-juelich.de/record/866900/files/mlw_FloatingCurrents.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866900 909CO $$ooai:juser.fz-juelich.de:866900$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866900 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000866900 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000866900 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000866900 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
000866900 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
000866900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b6$$kFZJ
000866900 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000866900 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866900 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866900 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866900 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866900 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2017
000866900 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2017
000866900 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866900 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866900 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866900 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866900 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866900 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866900 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866900 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866900 920__ $$lyes
000866900 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000866900 9801_ $$aFullTexts
000866900 980__ $$ajournal
000866900 980__ $$aVDB
000866900 980__ $$aUNRESTRICTED
000866900 980__ $$aI:(DE-Juel1)IEK-12-20141217
000866900 981__ $$aI:(DE-Juel1)IMD-4-20141217