001     866900
005     20240712113118.0
024 7 _ |a 10.1016/j.jpowsour.2017.03.136
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 2128/24280
|2 Handle
024 7 _ |a WOS:000401208100017
|2 WOS
037 _ _ |a FZJ-2019-05960
082 _ _ |a 620
100 1 _ |a Lewerenz, Meinert
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a New method evaluating currents keeping the voltage constant for fast and highly resolved measurement of Arrhenius relation and capacity fade
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581003320_22020
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The evaluation of floating currents is a powerful method to characterize capacity fade induced by calendaric aging and enables a highly resolved representation of the Arrhenius relation. The test arrangement is simple and could constitute a cheap alternative to state-of-the-art calendaric aging tests including check-up tests. Therefore the currents to maintain a constant voltage are evaluated. This method is validated by analyzing nine cylindrical 8 Ah LiFePO4|Graphite battery cells during calendaric aging at 25 °C, 40 °C and 60 °C at 3.6 V (100% SOC). The 3.6 V are kept by applying constant voltage while the floating currents are logged. The floating currents correlate with the rate of capacity loss measured during capacity tests. The floating currents reveal to be rather constant at 25 °C, linearly increasing at 40 °C and decreasing from a higher level at 60 °C. Additional tests with three test cells, with the temperature rising from 40 to 60 °C in steps of 5 K, exhibit non-constant currents starting from 50 °C on with high variations amongst the tested cells. Once stored above 50 °C, the cells exhibit increased floating currents compared to the measurement at the same temperature before exceeding 50 °C.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Käbitz, Stefan
|0 P:(DE-Juel1)166431
|b 1
700 1 _ |a Knips, Marcus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Münnix, Jens
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schmalstieg, Johannes
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Warnecke, Alexander
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 6
|u fzj
773 _ _ |a 10.1016/j.jpowsour.2017.03.136
|g Vol. 353, p. 144 - 151
|0 PERI:(DE-600)1491915-1
|p 144 - 151
|t Journal of power sources
|v 353
|y 2017
|x 0378-7753
856 4 _ |y Published on 2017-04-07. Available in OpenAccess from 2019-04-07.
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/866900/files/160708_mlw%20Floattestergebnisse_Accepted2.pdf
856 4 _ |u https://juser.fz-juelich.de/record/866900/files/mlw_FloatingCurrents.pdf
|y Restricted
856 4 _ |y Published on 2017-04-07. Available in OpenAccess from 2019-04-07.
|x pdfa
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/866900/files/160708_mlw%20Floattestergebnisse_Accepted2.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/866900/files/mlw_FloatingCurrents.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:866900
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21