001     866916
005     20240711085604.0
024 7 _ |a 10.1002/adem.201900988
|2 doi
024 7 _ |a 1438-1656
|2 ISSN
024 7 _ |a 1527-2648
|2 ISSN
024 7 _ |a 2128/25150
|2 Handle
024 7 _ |a WOS:000500686200001
|2 WOS
037 _ _ |a FZJ-2019-05969
082 _ _ |a 660
100 1 _ |a Mauer, Georg
|0 P:(DE-Juel1)129633
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Coatings with Columnar Microstructures for Thermal Barrier Applications
260 _ _ |a Frankfurt, M.
|c 2020
|b Deutsche Gesellschaft für Materialkunde
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1593192042_30049
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Columnar‐structured thermal barrier coatings (TBCs) manufactured by electron beam‐physical vapor deposition (EB‐PVD) are well known to exhibit high strain tolerance. However, as EB‐PVD is a high‐vacuum process, it is expensive. Suspension plasma spraying (SPS) and plasma spray‐physical vapor deposition (PS‐PVD) are alternatives for the manufacture of similar microstructures. Herein, the state of the art of manufacturing columnar‐structured TBCs by SPS and PS‐PVD is outlined. Both processes have been investigated and further developed at Forschungszentrum Jülich for many years. The mechanisms leading to the formation of columnar‐structured coatings are described and differentiated from EB‐PVD. Examples are given for SPS and PS‐PVD columnar microstructures and their life performance.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vaßen, Robert
|0 P:(DE-Juel1)129670
|b 1
|u fzj
773 _ _ |a 10.1002/adem.201900988
|g p. adem.201900988
|0 PERI:(DE-600)2016980-2
|n 6
|p 1900988
|t Advanced engineering materials
|v 22
|y 2020
|x 1527-2648
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866916/files/adem.201900988.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866916/files/adem.201900988.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866916
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENG MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21