001     866925
005     20220930130224.0
024 7 _ |a 10.1038/s41598-019-55092-z
|2 doi
024 7 _ |a 2128/23897
|2 Handle
024 7 _ |a altmetric:72323968
|2 altmetric
024 7 _ |a pmid:31811229
|2 pmid
024 7 _ |a WOS:000501745000001
|2 WOS
037 _ _ |a FZJ-2019-05978
082 _ _ |a 600
100 1 _ |a Vlasov, A. V.
|0 0000-0001-9218-0464
|b 0
245 _ _ |a Unusual features of the c-ring of F1FO ATP synthases
260 _ _ |a [London]
|c 2019
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1579178401_24850
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Membrane integral ATP synthases produce adenosine triphosphate, the universal “energy currency” of most organisms. However, important details of proton driven energy conversion are still unknown. We present the first high-resolution structure (2.3 Å) of the in meso crystallized c-ring of 14 subunits from spinach chloroplasts. The structure reveals molecular mechanisms of intersubunit contacts in the c14-ring, and it shows additional electron densities inside the c-ring which form circles parallel to the membrane plane. Similar densities were found in all known high-resolution structures of c-rings of F1FO ATP synthases from archaea and bacteria to eukaryotes. The densities might originate from isoprenoid quinones (such as coenzyme Q in mitochondria and plastoquinone in chloroplasts) that is consistent with differential UV-Vis spectroscopy of the c-ring samples, unusually large distance between polar/apolar interfaces inside the c-ring and universality among different species. Although additional experiments are required to verify this hypothesis, coenzyme Q and its analogues known as electron carriers of bioenergetic chains may be universal cofactors of ATP synthases, stabilizing c-ring and prevent ion leakage through it.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kovalev, K. V.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Marx, S.-H.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Round, E. S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gushchin, I. Yu.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Polovinkin, V. A.
|0 0000-0002-3630-5565
|b 5
700 1 _ |a Tsoy, N. M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Okhrimenko, I. S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Borshchevskiy, V. I.
|0 P:(DE-Juel1)179072
|b 8
700 1 _ |a Büldt, G. D.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ryzhykau, Yu. L.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Rogachev, A. V.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Chupin, V. V.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kuklin, A. I.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Dencher, N. A.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Gordeliy, V. I.
|0 P:(DE-Juel1)131964
|b 15
|e Corresponding author
773 _ _ |a 10.1038/s41598-019-55092-z
|g Vol. 9, no. 1, p. 18547
|0 PERI:(DE-600)2615211-3
|n 1
|p 18547
|t Scientific reports
|v 9
|y 2019
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/866925/files/30039446220009844993INVOIC2676166318001.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/866925/files/30039446220009844993INVOIC2676166318001.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866925/files/s41598-019-55092-z.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866925/files/s41598-019-55092-z.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866925
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)179072
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)131964
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21