001     866943
005     20240711114042.0
024 7 _ |a 10.1016/j.nme.2019.02.006
|2 doi
024 7 _ |a 2128/23506
|2 Handle
024 7 _ |a WOS:000470746100003
|2 WOS
037 _ _ |a FZJ-2019-05990
082 _ _ |a 624
100 1 _ |a Eksaeva, A.
|0 P:(DE-Juel1)171509
|b 0
|e Corresponding author
245 _ _ |a Surface roughness effect on Mo physical sputtering and re-deposition in the linear plasma device PSI-2 predicted by ERO2.0
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1616684542_18977
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Surface morphology and its evolution during the plasma irradiation is known to have a large influence on the erosion and resulting lifetime of plasma-facing components as well as tritium retention. For instance, surface roughness can affect physical sputtering, re-deposition, as well as angular distributions of the sputtered species. In this study the effect of surface roughness is implemented into the 3D Monte-Carlo code ERO2.0. First modelling results for molybdenum (Mo) irradiated with deuterium (D) in the conditions foreseen for the planned experiments at the linear plasma device PSI-2 are presented. Using the constructed examples of surfaces with various (regular and fractal) roughness types it is shown that the effective sputtering yield decreases for rough surfaces in comparison to smooth ones. The angular distribution of particles escaping from the rough surface collimates with the increase of the surface structure's aspect ratio. Moreover, the modelling predicts flattening of the surface during the plasma irradiation due to the preferable re-deposition in the “valleys” and sputtering of the peak tops.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
536 _ _ |a 3D Monte-Carlo simulations of plasma-wall interaction and impurity transport in fusion devices (jiek43_20190501)
|0 G:(DE-Juel1)jiek43_20190501
|c jiek43_20190501
|f 3D Monte-Carlo simulations of plasma-wall interaction and impurity transport in fusion devices
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Borodin, D.
|0 P:(DE-Juel1)7884
|b 1
700 1 _ |a Romazanov, J.
|0 P:(DE-Juel1)165905
|b 2
700 1 _ |a Kirschner, A.
|0 P:(DE-Juel1)2620
|b 3
700 1 _ |a Kreter, A.
|0 P:(DE-Juel1)130070
|b 4
700 1 _ |a Eichler, M.
|0 P:(DE-Juel1)166210
|b 5
700 1 _ |a Rasinski, M.
|0 P:(DE-Juel1)162160
|b 6
700 1 _ |a Pospieszczyk, A.
|0 P:(DE-Juel1)130122
|b 7
700 1 _ |a Unterberg, B.
|0 P:(DE-Juel1)6784
|b 8
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 9
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 10
700 1 _ |a Tskhakaya, D.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Borodkina, I.
|0 P:(DE-Juel1)168396
|b 12
700 1 _ |a Komm, M.
|0 P:(DE-HGF)0
|b 13
773 _ _ |a 10.1016/j.nme.2019.02.006
|g Vol. 19, p. 13 - 18
|0 PERI:(DE-600)2808888-8
|p 13 - 18
|t Nuclear materials and energy
|v 19
|y 2019
|x 2352-1791
856 4 _ |u https://juser.fz-juelich.de/record/866943/files/1-s2.0-S2352179118302679-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/866943/files/1-s2.0-S2352179118302679-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:866943
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171509
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)7884
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)2620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130070
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)6784
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)168396
910 1 _ |a IEK-4
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-Juel1)168396
913 1 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Plasma-Wall-Interaction
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21