000866945 001__ 866945
000866945 005__ 20240712101005.0
000866945 0247_ $$2doi$$a10.5194/acp-2019-573
000866945 0247_ $$2ISSN$$a0022-7722
000866945 0247_ $$2ISSN$$a1447-073X
000866945 0247_ $$2ISSN$$a1447-6959
000866945 0247_ $$2Handle$$a2128/27406
000866945 0247_ $$2altmetric$$aaltmetric:63752533
000866945 037__ $$aFZJ-2019-05992
000866945 082__ $$a550
000866945 1001_ $$0P:(DE-HGF)0$$aReutter, P.$$b0$$eCorresponding author
000866945 245__ $$aComparison of IAGOS in-situ water vapour measurements and ECMWF ERA-Interim Reanalysis data
000866945 260__ $$aKatlenburg-Lindau$$bEGU$$c2019
000866945 3367_ $$2DRIVER$$aarticle
000866945 3367_ $$2DataCite$$aOutput Types/Journal article
000866945 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615811876_31601
000866945 3367_ $$2BibTeX$$aARTICLE
000866945 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866945 3367_ $$00$$2EndNote$$aJournal Article
000866945 520__ $$aAbstract. Cirrus clouds and their potential formation regions, so-called ice-supersaturated regions (ISSRs) occur frequently in the tropopause region. It is assumed that ISSRs and cirrus clouds can change the tropopause structure by diabatic processes, driven by latent heating due to phase transition and interaction with radiation. For many research questions a three-dimensional picture including a sufficient temporal resolution of the water vapour fields in the tropopause region is required. This requirement is fulfilled nowadays by reanalysis products such as the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis. However, for a meaningful investigation of water vapour in the tropopause region a comparison of the reanalysis data with measurement is advisable, since it is difficult to measure water vapour and to assimilate meaningful measurements into reanalysis products. Here, we present an intercomparison of high-resolution in-situ measurements aboard passenger aircraft within the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; http://www.iagos.org) with ERA-Interim. Temperature and humidity data over the North Atlantic from 2000 to 2010 are compared relative to the dynamical tropopause. The comparison of the temperature shows a good agreement between measurement and ERA-Interim. While ERA-Interim can reproduce the main features of the water vapour measurements of IAGOS, the variability of the data is underestimated by the reanalysis data. The combination of temperature and water vapour leads to the relative humidity with respect to ice (RHi). Here ERA-Interim deviates from the measurements concerning values of larger than RHi=100 %, both in number and strength of supersaturation. The comparison of ISSR pathlengths shows distinct differences, which can be traced back to the spatial resolution of both data sets. IAGOS shows significantly more smaller ISSRs compared to ERA-Interim. A good agreement begins only at pathlengths in the order of the ERA-Interim spatial resolution and larger.
000866945 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000866945 588__ $$aDataset connected to CrossRef
000866945 7001_ $$0P:(DE-Juel1)161340$$aNeis, Patrick$$b1
000866945 7001_ $$0P:(DE-Juel1)129146$$aRohs, Susanne$$b2$$ufzj
000866945 7001_ $$0P:(DE-HGF)0$$aSauvage, B.$$b3
000866945 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2019-573$$p $$tAtmospheric chemistry and physics / Discussions$$v573$$x1680-7367$$y2019
000866945 8564_ $$uhttps://juser.fz-juelich.de/record/866945/files/acp-2019-573.pdf$$yOpenAccess
000866945 909CO $$ooai:juser.fz-juelich.de:866945$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866945 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129146$$aForschungszentrum Jülich$$b2$$kFZJ
000866945 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000866945 9132_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000866945 9141_ $$y2019
000866945 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866945 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866945 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866945 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866945 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000866945 9801_ $$aFullTexts
000866945 980__ $$ajournal
000866945 980__ $$aVDB
000866945 980__ $$aUNRESTRICTED
000866945 980__ $$aI:(DE-Juel1)IEK-8-20101013
000866945 981__ $$aI:(DE-Juel1)ICE-3-20101013