001     867205
005     20240711085628.0
024 7 _ |a 10.1002/adma.201901220
|2 doi
024 7 _ |a 0935-9648
|2 ISSN
024 7 _ |a 1521-4095
|2 ISSN
024 7 _ |a altmetric:61944546
|2 altmetric
024 7 _ |a pmid:31062911
|2 pmid
024 7 _ |a WOS:000475269900023
|2 WOS
024 7 _ |a 2128/24159
|2 Handle
037 _ _ |a FZJ-2019-06022
082 _ _ |a 660
100 1 _ |a Yang, Xiaofei
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Promoting the Transformation of Li 2 S 2 to Li 2 S: Significantly Increasing Utilization of Active Materials for High‐Sulfur‐Loading Li–S Batteries
260 _ _ |a Weinheim
|c 2019
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1576590802_1171
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lithium–sulfur (Li–S) batteries with high sulfur loading are urgently required in order to take advantage of their high theoretical energy density. Ether‐based Li–S batteries involve sophisticated multistep solid–liquid–solid–solid electrochemical reaction mechanisms. Recently, studies on Li–S batteries have widely focused on the initial solid (sulfur)–liquid (soluble polysulfide)–solid (Li2S2) conversion reactions, which contribute to the first 50% of the theoretical capacity of the Li–S batteries. Nonetheless, the sluggish kinetics of the solid–solid conversion from solid‐state intermediate product Li2S2 to the final discharge product Li2S (corresponding to the last 50% of the theoretical capacity) leads to the premature end of discharge, resulting in low discharge capacity output and low sulfur utilization. To tackle the aforementioned issue, a catalyst of amorphous cobalt sulfide (CoS3) is proposed to decrease the dissociation energy of Li2S2 and propel the electrochemical transformation of Li2S2 to Li2S. The CoS3 catalyst plays a critical role in improving the sulfur utilization, especially in high‐loading sulfur cathodes (3–10 mg cm−2). Accordingly, the Li2S/Li2S2 ratio in the discharge products increased to 5.60/1 from 1/1.63 with CoS3 catalyst, resulting in a sulfur utilization increase of 20% (335 mAh g−1) compared to the counterpart sulfur electrode without CoS3.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gao, Xuejie
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sun, Qian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jand, Sara Panahian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Yu, Ying
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhao, Yang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Li, Xia
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Adair, Keegan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kuo, Liang‐Yin
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Rohrer, Jochen
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Liang, Jianneng
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Lin, Xiaoting
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Banis, Mohammad Norouzi
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Hu, Yongfeng
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Zhang, Hongzhang
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Li, Xianfeng
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Li, Ruying
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Zhang, Huamin
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 18
|u fzj
700 1 _ |a Sham, Tsun‐Kong
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Sun, Xueliang
|0 P:(DE-HGF)0
|b 20
|e Corresponding author
773 _ _ |a 10.1002/adma.201901220
|g Vol. 31, no. 25, p. 1901220 -
|0 PERI:(DE-600)1474949-x
|n 25
|p 1901220 -
|t Advanced materials
|v 31
|y 2019
|x 1521-4095
856 4 _ |u https://juser.fz-juelich.de/record/867205/files/Yang_et_al-2019-Advanced_Materials.pdf
|y Restricted
856 4 _ |y Published on 2019-05-07. Available in OpenAccess from 2020-05-07.
|u https://juser.fz-juelich.de/record/867205/files/LiS-2.pdf
856 4 _ |y Published on 2019-05-07. Available in OpenAccess from 2020-05-07.
|x pdfa
|u https://juser.fz-juelich.de/record/867205/files/LiS-2.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/867205/files/Yang_et_al-2019-Advanced_Materials.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:867205
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)174502
910 1 _ |a IEK-1
|0 I:(DE-HGF)0
|b 18
|6 P:(DE-Juel1)174502
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b ADV MATER : 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21