000867278 001__ 867278
000867278 005__ 20240711085630.0
000867278 0247_ $$2doi$$a10.1002/aenm.201803902
000867278 0247_ $$2ISSN$$a1614-6832
000867278 0247_ $$2ISSN$$a1614-6840
000867278 0247_ $$2Handle$$a2128/23669
000867278 0247_ $$2altmetric$$aaltmetric:59495096
000867278 0247_ $$2WOS$$aWOS:000465464500010
000867278 037__ $$aFZJ-2019-06036
000867278 082__ $$a050
000867278 1001_ $$0P:(DE-HGF)0$$aKim, Un‐Hyuck$$b0
000867278 245__ $$aMicrostructure‐Controlled Ni‐Rich Cathode Material by Microscale Compositional Partition for Next‐Generation Electric Vehicles
000867278 260__ $$aWeinheim$$bWiley-VCH$$c2019
000867278 3367_ $$2DRIVER$$aarticle
000867278 3367_ $$2DataCite$$aOutput Types/Journal article
000867278 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576593287_1171
000867278 3367_ $$2BibTeX$$aARTICLE
000867278 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867278 3367_ $$00$$2EndNote$$aJournal Article
000867278 520__ $$aA multicompositional particulate Li[Ni0.9Co0.05Mn0.05]O2 cathode in which Li[Ni0.94Co0.038Mn0.022]O2 at the particle center is encapsulated by a 1.5 µm thick concentration gradient (CG) shell with the outermost surface composition Li[Ni0.841Co0.077Mn0.082]O2 is synthesized using a differential coprecipitation process. The microscale compositional partitioning at the particle level combined with the radial texturing of the refined primary particles in the CG shell layer protracts the detrimental H2 → H3 phase transition, causing sharp changes in the unit cell dimensions. This protraction, confirmed by in situ X‐ray diffraction and transmission electron microscopy, allows effective dissipation of the internal strain generated upon the H2 → H3 phase transition, markedly improving cycling performance and thermochemical stability as compared to those of the conventional single‐composition Li[Ni0.9Co0.05Mn0.05]O2 cathodes. The compositionally partitioned cathode delivers a discharge capacity of 229 mAh g−1 and exhibits capacity retention of 88% after 1000 cycles in a pouch‐type full cell (compared to 68% for the conventional cathode). Thus, the proposed cathode material provides an opportunity for the rational design and development of a wide range of multifunctional cathodes, especially for Ni‐rich Li[NixCoyMn1‐x‐y]O2 cathodes, by compositionally partitioning the cathode particles and thus optimizing the microstructural response to the internal strain produced in the deeply charged state.
000867278 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000867278 588__ $$aDataset connected to CrossRef
000867278 7001_ $$0P:(DE-HGF)0$$aRyu, Hoon‐Hee$$b1
000867278 7001_ $$0P:(DE-HGF)0$$aKim, Jae‐Hyung$$b2
000867278 7001_ $$0P:(DE-Juel1)129641$$aMücke, Robert$$b3$$ufzj
000867278 7001_ $$0P:(DE-Juel1)174502$$aKaghazchi, Payam$$b4$$ufzj
000867278 7001_ $$0P:(DE-HGF)0$$aYoon, Chong S.$$b5$$eCorresponding author
000867278 7001_ $$0P:(DE-HGF)0$$aSun, Yang‐Kook$$b6$$eCorresponding author
000867278 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.201803902$$gVol. 9, no. 15, p. 1803902 -$$n15$$p1803902 -$$tAdvanced energy materials$$v9$$x1614-6840$$y2019
000867278 8564_ $$uhttps://juser.fz-juelich.de/record/867278/files/Kim_et_al-2019-Advanced_Energy_Materials.pdf$$yRestricted
000867278 8564_ $$uhttps://juser.fz-juelich.de/record/867278/files/AEM.pdf$$yPublished on 2019-02-21. Available in OpenAccess from 2020-02-21.
000867278 8564_ $$uhttps://juser.fz-juelich.de/record/867278/files/Kim_et_al-2019-Advanced_Energy_Materials.pdf?subformat=pdfa$$xpdfa$$yRestricted
000867278 8564_ $$uhttps://juser.fz-juelich.de/record/867278/files/AEM.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-02-21. Available in OpenAccess from 2020-02-21.
000867278 909CO $$ooai:juser.fz-juelich.de:867278$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129641$$aForschungszentrum Jülich$$b3$$kFZJ
000867278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174502$$aForschungszentrum Jülich$$b4$$kFZJ
000867278 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000867278 9141_ $$y2019
000867278 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867278 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000867278 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867278 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV ENERGY MATER : 2017
000867278 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2017
000867278 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867278 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867278 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000867278 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867278 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867278 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867278 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867278 920__ $$lyes
000867278 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000867278 9801_ $$aFullTexts
000867278 980__ $$ajournal
000867278 980__ $$aVDB
000867278 980__ $$aUNRESTRICTED
000867278 980__ $$aI:(DE-Juel1)IEK-1-20101013
000867278 981__ $$aI:(DE-Juel1)IMD-2-20101013