| Home > Publications database > Microstructure‐Controlled Ni‐Rich Cathode Material by Microscale Compositional Partition for Next‐Generation Electric Vehicles > print |
| 001 | 867278 | ||
| 005 | 20240711085630.0 | ||
| 024 | 7 | _ | |a 10.1002/aenm.201803902 |2 doi |
| 024 | 7 | _ | |a 1614-6832 |2 ISSN |
| 024 | 7 | _ | |a 1614-6840 |2 ISSN |
| 024 | 7 | _ | |a 2128/23669 |2 Handle |
| 024 | 7 | _ | |a altmetric:59495096 |2 altmetric |
| 024 | 7 | _ | |a WOS:000465464500010 |2 WOS |
| 037 | _ | _ | |a FZJ-2019-06036 |
| 082 | _ | _ | |a 050 |
| 100 | 1 | _ | |a Kim, Un‐Hyuck |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Microstructure‐Controlled Ni‐Rich Cathode Material by Microscale Compositional Partition for Next‐Generation Electric Vehicles |
| 260 | _ | _ | |a Weinheim |c 2019 |b Wiley-VCH |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1576593287_1171 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a A multicompositional particulate Li[Ni0.9Co0.05Mn0.05]O2 cathode in which Li[Ni0.94Co0.038Mn0.022]O2 at the particle center is encapsulated by a 1.5 µm thick concentration gradient (CG) shell with the outermost surface composition Li[Ni0.841Co0.077Mn0.082]O2 is synthesized using a differential coprecipitation process. The microscale compositional partitioning at the particle level combined with the radial texturing of the refined primary particles in the CG shell layer protracts the detrimental H2 → H3 phase transition, causing sharp changes in the unit cell dimensions. This protraction, confirmed by in situ X‐ray diffraction and transmission electron microscopy, allows effective dissipation of the internal strain generated upon the H2 → H3 phase transition, markedly improving cycling performance and thermochemical stability as compared to those of the conventional single‐composition Li[Ni0.9Co0.05Mn0.05]O2 cathodes. The compositionally partitioned cathode delivers a discharge capacity of 229 mAh g−1 and exhibits capacity retention of 88% after 1000 cycles in a pouch‐type full cell (compared to 68% for the conventional cathode). Thus, the proposed cathode material provides an opportunity for the rational design and development of a wide range of multifunctional cathodes, especially for Ni‐rich Li[NixCoyMn1‐x‐y]O2 cathodes, by compositionally partitioning the cathode particles and thus optimizing the microstructural response to the internal strain produced in the deeply charged state. |
| 536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Ryu, Hoon‐Hee |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Kim, Jae‐Hyung |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Mücke, Robert |0 P:(DE-Juel1)129641 |b 3 |u fzj |
| 700 | 1 | _ | |a Kaghazchi, Payam |0 P:(DE-Juel1)174502 |b 4 |u fzj |
| 700 | 1 | _ | |a Yoon, Chong S. |0 P:(DE-HGF)0 |b 5 |e Corresponding author |
| 700 | 1 | _ | |a Sun, Yang‐Kook |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
| 773 | _ | _ | |a 10.1002/aenm.201803902 |g Vol. 9, no. 15, p. 1803902 - |0 PERI:(DE-600)2594556-7 |n 15 |p 1803902 - |t Advanced energy materials |v 9 |y 2019 |x 1614-6840 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/867278/files/Kim_et_al-2019-Advanced_Energy_Materials.pdf |y Restricted |
| 856 | 4 | _ | |y Published on 2019-02-21. Available in OpenAccess from 2020-02-21. |u https://juser.fz-juelich.de/record/867278/files/AEM.pdf |
| 856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/867278/files/Kim_et_al-2019-Advanced_Energy_Materials.pdf?subformat=pdfa |y Restricted |
| 856 | 4 | _ | |y Published on 2019-02-21. Available in OpenAccess from 2020-02-21. |x pdfa |u https://juser.fz-juelich.de/record/867278/files/AEM.pdf?subformat=pdfa |
| 909 | C | O | |o oai:juser.fz-juelich.de:867278 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129641 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)174502 |
| 913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2019 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
| 915 | _ | _ | |a IF >= 20 |0 StatID:(DE-HGF)9920 |2 StatID |b ADV ENERGY MATER : 2017 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV ENERGY MATER : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|