000867367 001__ 867367
000867367 005__ 20210130003724.0
000867367 0247_ $$2doi$$a10.1073/pnas.1916180116
000867367 0247_ $$2ISSN$$a0027-8424
000867367 0247_ $$2ISSN$$a1091-6490
000867367 0247_ $$2Handle$$a2128/23685
000867367 0247_ $$2altmetric$$aaltmetric:72187332
000867367 0247_ $$2pmid$$apmid:31792179
000867367 0247_ $$2WOS$$aWOS:000503281500031
000867367 037__ $$aFZJ-2019-06043
000867367 082__ $$a500
000867367 1001_ $$00000-0001-5590-4849$$aLuo, Zhi$$b0
000867367 245__ $$aDetermination and evaluation of the nonadditivity in wetting of molecularly heterogeneous surfaces
000867367 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2019
000867367 3367_ $$2DRIVER$$aarticle
000867367 3367_ $$2DataCite$$aOutput Types/Journal article
000867367 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1586005163_29481
000867367 3367_ $$2BibTeX$$aARTICLE
000867367 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867367 3367_ $$00$$2EndNote$$aJournal Article
000867367 520__ $$aThe interface between water and folded proteins is very complex. Proteins have “patchy” solvent-accessible areas composed of domains of varying hydrophobicity. The textbook understanding is that these domains contribute additively to interfacial properties (Cassie’s equation, CE). An ever-growing number of modeling papers question the validity of CE at molecular length scales, but there is no conclusive experiment to support this and no proposed new theoretical framework. Here, we study the wetting of model compounds with patchy surfaces differing solely in patchiness but not in composition. Were CE to be correct, these materials would have had the same solid–liquid work of adhesion (WSL) and time-averaged structure of interfacial water. We find considerable differences in WSL, and sum-frequency generation measurements of the interfacial water structure show distinctively different spectral features. Molecular-dynamics simulations of water on patchy surfaces capture the observed behaviors and point toward significant nonadditivity in water density and average orientation. They show that a description of the molecular arrangement on the surface is needed to predict its wetting properties. We propose a predictive model that considers, for every molecule, the contributions of its first-nearest neighbors as a descriptor to determine the wetting properties of the surface. The model is validated by measurements of WSL in multiple solvents, where large differences are observed for solvents whose effective diameter is smaller than ∼6 Å. The experiments and theoretical model proposed here provide a starting point to develop a comprehensive understanding of complex biological interfaces as well as for the engineering of synthetic ones.
000867367 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000867367 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000867367 588__ $$aDataset connected to CrossRef
000867367 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000867367 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000867367 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000867367 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000867367 7001_ $$00000-0002-8133-7603$$aMurello, Anna$$b1
000867367 7001_ $$00000-0003-3739-5512$$aWilkins, David M.$$b2
000867367 7001_ $$0P:(DE-HGF)0$$aKovacik, Filip$$b3
000867367 7001_ $$0P:(DE-HGF)0$$aKohlbrecher, Joachim$$b4
000867367 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b5
000867367 7001_ $$00000-0002-2492-1168$$aOkur, Halil I.$$b6
000867367 7001_ $$0P:(DE-HGF)0$$aOng, Quy K.$$b7
000867367 7001_ $$0P:(DE-HGF)0$$aRoke, Sylvie$$b8
000867367 7001_ $$00000-0003-2571-2832$$aCeriotti, Michele$$b9
000867367 7001_ $$00000-0003-4635-6080$$aStellacci, Francesco$$b10$$eCorresponding author
000867367 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1916180116$$gp. 201916180 -$$n51$$p25516-25523$$tProceedings of the National Academy of Sciences of the United States of America$$v116$$x1091-6490$$y2019
000867367 8564_ $$uhttps://juser.fz-juelich.de/record/867367/files/25516.full.pdf$$yOpenAccess
000867367 8564_ $$uhttps://juser.fz-juelich.de/record/867367/files/manuscript_accepted.pdf$$yOpenAccess
000867367 8564_ $$uhttps://juser.fz-juelich.de/record/867367/files/25516.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867367 909CO $$ooai:juser.fz-juelich.de:867367$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000867367 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b5$$kFZJ
000867367 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000867367 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000867367 9141_ $$y2019
000867367 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867367 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000867367 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000867367 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867367 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000867367 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2017
000867367 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2017
000867367 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867367 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867367 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867367 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000867367 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867367 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867367 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000867367 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867367 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000867367 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867367 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000867367 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867367 920__ $$lyes
000867367 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000867367 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000867367 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000867367 980__ $$ajournal
000867367 980__ $$aVDB
000867367 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000867367 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000867367 980__ $$aI:(DE-588b)4597118-3
000867367 980__ $$aUNRESTRICTED
000867367 9801_ $$aFullTexts