000867452 001__ 867452 000867452 005__ 20240313095012.0 000867452 020__ $$a978-3-030-82426-6 (print) 000867452 020__ $$a978-3-030-82427-3 (electronic) 000867452 0247_ $$2doi$$a10.1007/978-3-030-82427-3_5 000867452 0247_ $$2ISSN$$a0302-9743 000867452 0247_ $$2ISSN$$a1611-3349 000867452 0247_ $$2Handle$$a2128/28352 000867452 037__ $$aFZJ-2019-06093 000867452 1001_ $$0P:(DE-Juel1)142361$$aSuarez, Estela$$b0$$eCorresponding author 000867452 1112_ $$aBrainComp 2019 - Workshop on Brain-Inspired Computing$$cCetraro$$d2019-07-15 - 2019-07-19$$wItaly 000867452 245__ $$aModular Supercomputing for Neuroscience 000867452 260__ $$aCham$$bSpringer International Publishing$$c2021 000867452 29510 $$aBrain-Inspired Computing / Amunts, Katrin (Editor) [https://orcid.org/0000-0001-5828-0867] ; Cham : Springer International Publishing, 2021, Chapter 5 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-030-82426-6=978-3-030-82427-3 ; doi:10.1007/978-3-030-82427-3 000867452 300__ $$a63-80 000867452 3367_ $$2ORCID$$aCONFERENCE_PAPER 000867452 3367_ $$033$$2EndNote$$aConference Paper 000867452 3367_ $$2BibTeX$$aINPROCEEDINGS 000867452 3367_ $$2DRIVER$$aconferenceObject 000867452 3367_ $$2DataCite$$aOutput Types/Conference Paper 000867452 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1627468881_2583 000867452 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb 000867452 4900_ $$aLecture Notes in Computer Science$$v12339 000867452 520__ $$aThe precise simulation of the human brain requires coupling different models in order to cover the different physiological and functional aspects of this extremely complex organ. Each of this brain models is implemented following specific mathematical and programming approaches, potentially leading to diverging computational behaviour and requirements. Such situation is the typical use case that can benefit from the Modular Supercomputing Architecture (MSA), which organizes heterogeneous computing resources at system level. This architecture and its corresponding software environment enable to run each part of an application or a workflow on the best suited hardware.This paper presents the MSA concept covering current hardware and software implementations, and describes how the neuroscientific workflow resulting of coupling the codes NEST and Arbor is being prepared to exploit the MSA. 000867452 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 000867452 536__ $$0G:(DE-HGF)POF4-5122$$a5122 - Future Computing & Big Data Systems (POF4-512)$$cPOF4-512$$fPOF IV$$x1 000867452 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x2 000867452 536__ $$0G:(EU-Grant)754304$$aDEEP-EST - DEEP - Extreme Scale Technologies (754304)$$c754304$$fH2020-FETHPC-2016$$x3 000867452 536__ $$0G:(EU-Grant)610476$$aDEEP-ER - DEEP Extended Reach (610476)$$c610476$$fFP7-ICT-2013-10$$x4 000867452 536__ $$0G:(EU-Grant)287530$$aDEEP - Dynamical Exascale Entry Platform (287530)$$c287530$$fFP7-ICT-2011-7$$x5 000867452 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x6 000867452 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x7 000867452 588__ $$aDataset connected to CrossRef Book Series, Journals: juser.fz-juelich.de 000867452 7001_ $$0P:(DE-HGF)0$$aKunkel, Susanne$$b1 000867452 7001_ $$0P:(DE-Juel1)166193$$aKüsters, Anne$$b2 000867452 7001_ $$0P:(DE-Juel1)169781$$aPlesser, Hans Ekkehard$$b3$$ufzj 000867452 7001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b4 000867452 773__ $$a10.1007/978-3-030-82427-3_5 000867452 8564_ $$uhttps://juser.fz-juelich.de/record/867452/files/Suarez2021_Chapter_ModularSupercomputingForNeuros.pdf$$yOpenAccess 000867452 909CO $$ooai:juser.fz-juelich.de:867452$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 000867452 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142361$$aForschungszentrum Jülich$$b0$$kFZJ 000867452 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166193$$aForschungszentrum Jülich$$b2$$kFZJ 000867452 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169781$$aForschungszentrum Jülich$$b3$$kFZJ 000867452 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich$$b4$$kFZJ 000867452 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 000867452 9131_ $$0G:(DE-HGF)POF4-512$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5122$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vSupercomputing & Big Data Infrastructures$$x1 000867452 9141_ $$y2021 000867452 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-25 000867452 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000867452 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-25$$wger 000867452 920__ $$lyes 000867452 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000867452 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x1 000867452 9801_ $$aFullTexts 000867452 980__ $$acontrib 000867452 980__ $$aVDB 000867452 980__ $$aUNRESTRICTED 000867452 980__ $$acontb 000867452 980__ $$aI:(DE-Juel1)JSC-20090406 000867452 980__ $$aI:(DE-Juel1)INM-6-20090406 000867452 981__ $$aI:(DE-Juel1)IAS-6-20130828