% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@INPROCEEDINGS{Suarez:867452,
      author       = {Suarez, Estela and Kunkel, Susanne and Küsters, Anne and
                      Plesser, Hans Ekkehard and Lippert, Thomas},
      title        = {{M}odular {S}upercomputing for {N}euroscience},
      volume       = {12339},
      address      = {Cham},
      publisher    = {Springer International Publishing},
      reportid     = {FZJ-2019-06093},
      isbn         = {978-3-030-82426-6 (print)},
      series       = {Lecture Notes in Computer Science},
      pages        = {63-80},
      year         = {2021},
      comment      = {Brain-Inspired Computing / Amunts, Katrin (Editor)
                      [https://orcid.org/0000-0001-5828-0867] ; Cham : Springer
                      International Publishing, 2021, Chapter 5 ; ISSN:
                      0302-9743=1611-3349 ; ISBN:
                      978-3-030-82426-6=978-3-030-82427-3 ;
                      doi:10.1007/978-3-030-82427-3},
      booktitle     = {Brain-Inspired Computing / Amunts,
                       Katrin (Editor)
                       [https://orcid.org/0000-0001-5828-0867]
                       ; Cham : Springer International
                       Publishing, 2021, Chapter 5 ; ISSN:
                       0302-9743=1611-3349 ; ISBN:
                       978-3-030-82426-6=978-3-030-82427-3 ;
                       doi:10.1007/978-3-030-82427-3},
      abstract     = {The precise simulation of the human brain requires coupling
                      different models in order to cover the different
                      physiological and functional aspects of this extremely
                      complex organ. Each of this brain models is implemented
                      following specific mathematical and programming approaches,
                      potentially leading to diverging computational behaviour and
                      requirements. Such situation is the typical use case that
                      can benefit from the Modular Supercomputing Architecture
                      (MSA), which organizes heterogeneous computing resources at
                      system level. This architecture and its corresponding
                      software environment enable to run each part of an
                      application or a workflow on the best suited hardware.This
                      paper presents the MSA concept covering current hardware and
                      software implementations, and describes how the
                      neuroscientific workflow resulting of coupling the codes
                      NEST and Arbor is being prepared to exploit the MSA.},
      month         = {Jul},
      date          = {2019-07-15},
      organization  = {BrainComp 2019 - Workshop on
                       Brain-Inspired Computing, Cetraro
                       (Italy), 15 Jul 2019 - 19 Jul 2019},
      cin          = {JSC / INM-6},
      cid          = {I:(DE-Juel1)JSC-20090406 / I:(DE-Juel1)INM-6-20090406},
      pnm          = {5111 - Domain-Specific Simulation $\&$ Data Life Cycle Labs
                      (SDLs) and Research Groups (POF4-511) / 5122 - Future
                      Computing $\&$ Big Data Systems (POF4-512) / SLNS - SimLab
                      Neuroscience (Helmholtz-SLNS) / DEEP-EST - DEEP - Extreme
                      Scale Technologies (754304) / DEEP-ER - DEEP Extended Reach
                      (610476) / DEEP - Dynamical Exascale Entry Platform (287530)
                      / HBP SGA2 - Human Brain Project Specific Grant Agreement 2
                      (785907) / HBP SGA1 - Human Brain Project Specific Grant
                      Agreement 1 (720270)},
      pid          = {G:(DE-HGF)POF4-5111 / G:(DE-HGF)POF4-5122 /
                      G:(DE-Juel1)Helmholtz-SLNS / G:(EU-Grant)754304 /
                      G:(EU-Grant)610476 / G:(EU-Grant)287530 / G:(EU-Grant)785907
                      / G:(EU-Grant)720270},
      typ          = {PUB:(DE-HGF)8 / PUB:(DE-HGF)7},
      doi          = {10.1007/978-3-030-82427-3_5},
      url          = {https://juser.fz-juelich.de/record/867452},
}