001 | 867452 | ||
005 | 20240313095012.0 | ||
020 | _ | _ | |a 978-3-030-82426-6 (print) |
020 | _ | _ | |a 978-3-030-82427-3 (electronic) |
024 | 7 | _ | |a 10.1007/978-3-030-82427-3_5 |2 doi |
024 | 7 | _ | |a 0302-9743 |2 ISSN |
024 | 7 | _ | |a 1611-3349 |2 ISSN |
024 | 7 | _ | |a 2128/28352 |2 Handle |
037 | _ | _ | |a FZJ-2019-06093 |
100 | 1 | _ | |a Suarez, Estela |0 P:(DE-Juel1)142361 |b 0 |e Corresponding author |
111 | 2 | _ | |a BrainComp 2019 - Workshop on Brain-Inspired Computing |c Cetraro |d 2019-07-15 - 2019-07-19 |w Italy |
245 | _ | _ | |a Modular Supercomputing for Neuroscience |
260 | _ | _ | |a Cham |c 2021 |b Springer International Publishing |
295 | 1 | 0 | |a Brain-Inspired Computing / Amunts, Katrin (Editor) [https://orcid.org/0000-0001-5828-0867] ; Cham : Springer International Publishing, 2021, Chapter 5 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-030-82426-6=978-3-030-82427-3 ; doi:10.1007/978-3-030-82427-3 |
300 | _ | _ | |a 63-80 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1627468881_2583 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
490 | 0 | _ | |a Lecture Notes in Computer Science |v 12339 |
520 | _ | _ | |a The precise simulation of the human brain requires coupling different models in order to cover the different physiological and functional aspects of this extremely complex organ. Each of this brain models is implemented following specific mathematical and programming approaches, potentially leading to diverging computational behaviour and requirements. Such situation is the typical use case that can benefit from the Modular Supercomputing Architecture (MSA), which organizes heterogeneous computing resources at system level. This architecture and its corresponding software environment enable to run each part of an application or a workflow on the best suited hardware.This paper presents the MSA concept covering current hardware and software implementations, and describes how the neuroscientific workflow resulting of coupling the codes NEST and Arbor is being prepared to exploit the MSA. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
536 | _ | _ | |a 5122 - Future Computing & Big Data Systems (POF4-512) |0 G:(DE-HGF)POF4-5122 |c POF4-512 |f POF IV |x 1 |
536 | _ | _ | |a SLNS - SimLab Neuroscience (Helmholtz-SLNS) |0 G:(DE-Juel1)Helmholtz-SLNS |c Helmholtz-SLNS |x 2 |
536 | _ | _ | |a DEEP-EST - DEEP - Extreme Scale Technologies (754304) |0 G:(EU-Grant)754304 |c 754304 |f H2020-FETHPC-2016 |x 3 |
536 | _ | _ | |a DEEP-ER - DEEP Extended Reach (610476) |0 G:(EU-Grant)610476 |c 610476 |f FP7-ICT-2013-10 |x 4 |
536 | _ | _ | |a DEEP - Dynamical Exascale Entry Platform (287530) |0 G:(EU-Grant)287530 |c 287530 |f FP7-ICT-2011-7 |x 5 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 6 |
536 | _ | _ | |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) |0 G:(EU-Grant)720270 |c 720270 |f H2020-Adhoc-2014-20 |x 7 |
588 | _ | _ | |a Dataset connected to CrossRef Book Series, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Kunkel, Susanne |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Küsters, Anne |0 P:(DE-Juel1)166193 |b 2 |
700 | 1 | _ | |a Plesser, Hans Ekkehard |0 P:(DE-Juel1)169781 |b 3 |u fzj |
700 | 1 | _ | |a Lippert, Thomas |0 P:(DE-Juel1)132179 |b 4 |
773 | _ | _ | |a 10.1007/978-3-030-82427-3_5 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/867452/files/Suarez2021_Chapter_ModularSupercomputingForNeuros.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:867452 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)142361 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)166193 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)169781 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)132179 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-512 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Supercomputing & Big Data Infrastructures |9 G:(DE-HGF)POF4-5122 |x 1 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-25 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-08-25 |w ger |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 1 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a contb |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|