®

Check for
updates

Modular Supercomputing
for Neuroscience

Estela Suarez!®™) | Susanne Kunkel?, Anne Kiisters®, Hans Ekkehard Plesser®?,
and Thomas Lippert!:®

1 Jiilich Supercomputing Centre (JSC) - Forschungszentrum Jiilich GmbH,
Leo Brandt Strasse, 52428 Jiilich, Germany
e.suarez@fz-juelich.de
2 Faculty of Science and Technology, Norwegian University of Life Sciences (NMBU),
As, Norway
3 Simulation Laboratory Neuroscience — Bernstein Facility for High Performance
Simulation and Data Analytics, Institute for Advanced Simulation,

Jilich Aachen Research Alliance, Jiilich Research Center, Jiilich, Germany
4 Institute of Neuroscience and Medicine (INM-6), Jiilich Research Center,
Jilich, Germany
5 Frankfurt Institute for Advanced Studies (FIAS), Goethe-Universitit Frankfurt,
Ruth-Moufang-Strafle 1, 60438 Frankfurt am Main, Germany

Abstract. The precise simulation of the human brain requires coupling
different models in order to cover the different physiological and func-
tional aspects of this extremely complex organ. Each of this brain mod-
els is implemented following specific mathematical and programming
approaches, potentially leading to diverging computational behaviour
and requirements. Such situation is the typical use case that can benefit
from the Modular Supercomputing Architecture (MSA), which organizes
heterogeneous computing resources at system level. This architecture
and its corresponding software environment enable to run each part of
an application or a workflow on the best suited hardware.

This paper presents the MSA concept covering current hardware and
software implementations, and describes how the neuroscientific work-
flow resulting of coupling the codes NEST and Arbor is being prepared
to exploit the MSA.

Keywords: Modular Supercomputing Architecture + MSA -
Heterogeneous computer architectures - DEEP projects - Accelerators *
Workflow - Neuroscience + Arbor + NEST

1 Introduction

Since the construction of the first cluster computer in the nineties [1], intercon-
necting a large number of commodity, general-purpose processors has become the
most popular approach to build High-Performance Computing (HPC) systems.
In recent years, these traditionally homogeneous clusters are being substituted
by heterogeneous configurations employing a variety of acceleration technologies.

© The Author(s) 2021
K. Amunts et al. (Eds.): BrainComp 2019, LNCS 12339, pp. 63-80, 2021.
https://doi.org/10.1007/978-3-030-82427-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82427-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-82427-3_5

64 E. Suarez et al.

Computing devices are considered as accelerators when they have been
designed to perform specific operations very fast. In principle, such definition
would apply even to individual execution units within the CPU, such as tensor
cores or advanced vector registers. However, in this paper we denote as accelera-
tors only those out-of-package devices made of a very large number of relatively
simple compute cores. Under this definition, the most frequently used example
of an accelerator is a graphic processing unit (GPU). As their name says, GPUs
were originally developed to very efficiently render and visualize graphics, but
today their compute performance is also employed to perform floating point and
tensor operations in all kinds of applications. Since accelerators are designed
to execute auxiliary operations, they frequently depend on a CPU (considered
as its host) to carry out important actions such as booting the accelerator and
enabling it to communicate through the cluster-level high-speed network.

Accelerators rely on exploiting parallelism to compute, as their large number
of compute cores/units are operated at relatively low frequencies. In consequence,
they are able to achieve high peak-performances using less power than standard
CPUs. Their energy efficiency — expressed through a high Flop/Watt ratio — is in
fact the main reason for the success of accelerators in HPC. Clusters with accel-
erators are generally more energy-efficient than those without, and this difference
becomes a major cost-factor in the operation of very large-scale platforms.

With regards to the system-level architectures of accelerated clusters, one
can observe that typically one, two or more accelerators are integrated inside
a node connected to a general purpose CPU via a PCle interface. This node
configuration is then multiplied several thousands of times, and the CPUs are
interconnected with each other via some high-speed network. Recently, intercon-
nection of the GPUs within the node has become possible, improving the ability
to exchange data between them. In consequence the trend goes towards GPU-
islands with four, six or even more GPUs per node. The negative consequence is
a dramatic growth in compute power inside the accelerated-node, which is not
compensated with a proportional increase in inter-node communication band-
width. Therefore, though the scaling inside the node improves, the system-level
scaling of codes is impeded by the imbalanced compute-to-communication capa-
bilities between nodes.

The traditional programming model for node-level accelerated clusters is to
run the main program in the host CPUs and offload compute-intensive kernels to
the accelerators. For the large problems tackled by HPC, multi-node executions
require exchanging data between the parts of the application running on the host
and the accelerator. However, the static assignment of accelerators to CPUs
within the node, added to the additional communication latencies that apply
when inter-accelerator communication is executed through the host — what today
is not always necessarily the case anymore —, limits the scalability and flexibility
of this node-level heterogeneous cluster concept.

For example: an application running on a cluster with four GPUs per node
might fully exploit the host CPUs but use only one of the GPUs attached to
each one of them. In such case it will be hardly possible for other applications
to use these free devices, as access needs to go through the CPU, which is busy.

Modular Supercomputing 65

In consequence, in this example almost 3/4 of the computation power of the
system will remain idle. Obviously such situation would be avoided if the system
is deployed with exactly the amount of accelerators per node required by the
applications that will run on it. However, finding the right static configuration
for all the users of the HPC system becomes impossible since the application
portfolio is getting more and more diverse.

Today, the users of HPC systems employ codes ranging from high-scale,
tightly coupled simulations, to high-performance data analytics (HPDA) and
deep learning (DL). In fact, not only the applications are very different from
each other, but even the workflows from individual users combine codes with
very diverse requirements.

This is particularly the case in neuroscience, which aims at better under-
standing the behaviour of the possibly most complex organ in nature: the human
brain. The huge scale spans (from nanometers to centimeters), the complexity of
the involved physical and biological effects, and the tight interrelation between
all of these aspects require the combination of various codes in order to reproduce
the behaviour of the brain with some accuracy. All these codes present generally
different requirements, making the overall usage scenario a natural candidate for
using the a Modular Supercomputing Architecture (MSA).

The particular case addressed by this paper is the coupling of NEST and
Arbor, two neuroscientific codes that can together bring a deep insight in the
functions of the human brain. NEST simulations of large-scale networks of simple
integrate-and-fire type model neurons are memory-bound due to the communica-
tion and memory accesses required to reproduce the exchange of neuronal signals,
which dominate the total runtime [23]. Therefore, NEST runs best on general
purpose clusters. On the other hand, Arbor simulates multi-compartment neu-
rons with a very high computational cost per neuron and is therefore compute-
bound, making it the ideal candidate to run on accelerators. The coupling of both
codes could therefore profit from an MSA system in which CPU and accelerator
resources can be reserved and allocated independently.

This paper explains the MSA and how a neuroscientific workflow combining
the codes NEST and Arbor aims at employing it. Section 2 explains the architec-
ture concept, while Sect. 3 and 4 describe current hardware platforms and their
software environment. Section 5 describes the above-mentioned Nest-Arbor neu-
roscientific workflow, and the paper is summarized in Sect. 6.

2 The Modular Supercomputing Architecture (MSA)

The Modular Supercomputing Architecture (MSA) developed at the Jiilich
Supercomputing Centre (JSC) within the series of EU-funded DEEP projects |2,
3] aims at providing cost-effective computing capabilities fitting the needs of a
wide range of computational sciences [4,5].

The MSA segregates heterogeneous resources and implements heterogeneity
at system level, instead of node level (see Fig. 1). In its simplest configuration (the
so-called cluster-booster approach [6]), a cluster made of general purpose CPUs

66 E. Suarez et al.

Module 1
Cluster

Module 6 Module 2
Multi-tier Storage Booster
System

Module 5 M S/ \ Module 3

Quantum Datﬁﬁé‘ﬁ,'gﬁcs
Module

Module 4 AN § AN i AN
QN — QN Neuromorphic

Module

NN H NN

Fig. 1. Sketch of the modular supercomputing architecture. Note that this diagram
reflects the general concept and does not represent any specific computer. Example
modules: Cluster (CN: Cluster node), Booster (BN: Booster node), Data Analytics
(AN: Analytics node), Neuromorphic (NN: Neuromorphic node), and Quantum (QN:
Quantum node). For a schema of the MSA realization in the DEEP-EST prototype see
Fig. 3, left.

is attached to a cluster of accelerators (the booster). In the latter accelerators are
considered and operated as first-class computing devices. Furthermore, nodes on
cluster and booster can be allocated independently and according to the needs
of each application, so that no resources are blocked by allocating others.

In the first hardware realizations of the cluster-booster concept (e.g.
JURECA, see Sect. 3.1), the booster used many-core processors that could boot
and communicate through the system-level network without relying on host-
CPUs. Fully autonomous accelerators are ideal for the MSA, as they enable
scaling-up the cluster and the booster independently. In particular, the energy-
efficient booster can be built at very large size (e.g. exascale), while the cluster
is kept at a relatively small size to cover the needs of low-scaling parts of the
applications without impacting on the overall power consumption of the sys-
tem. Note that this is not possible in the traditional accelerated-node approach,
where increasing the number of accelerators implies a proportional increase in
the amount of general-purpose CPUs due to the static assignment between both.

Unfortunately, today’s GPUs still rely on a host-CPU and cannot be operated
autonomously. Still, the booster philosophy can be kept if one employs a low-power
(and computationally weak) CPU, reducing its role to the orchestration and oper-
ation of the attached GPU(s). In this case, even if the number of CPUs increases
when scaling-up the system, their contribution to the overall power consumption

Modular Supercomputing 67

is very small. Another key goal of the booster is achieving a good intra-node and
inter-node communication-to-computation balance. If the selected GPU is com-
putationally very strong, it might be beneficial to keep a low number of them per
node (eventually only one), in order to fully exploit all its bandwidth towards the
network. These kind of considerations are crucial to achieve the goal of the booster:
good system balance and energy-efficient scalability at system level.

Note, however, that the MSA is much more general than the cluster-booster
concept, which is very much focused on matching the different concurrency levels
in applications. In the same way as the cluster provides hardware support to
run the low/medium scalable part of codes while the booster does the same for
highly-scalable codes, some applications need different acceleration technologies
and varying sizes of memory devices and capacities. The MSA aims at fulfilling
the needs of very diverse application requirements by interconnecting a variety
of compute modules. Each module is a multi-node system of potentially large
side, designed with specific hardware configurations that target a part of the
application portfolio.

AT High-scale
y Cluster N Simulation
workflow

Module 6 (
Multi-tier Storage \
System \
\
Module 5 Module 3
Quantum y Data Analytics
Module / Module
" Module 4 AN | oan | oan
QN 1 QN / Neuromorphic /
/ Module
y 4
Deep \ .. Data Analytics
Learning workflow
workflow

Fig. 2. Distribution of three different (hypothetical) workflows on an MSA system.
See in Fig. 5 the mapping on the DEEP-EST prototype of the neuroscientific workflow
matter of this paper.

One of the goals with MSA is to enable application developers to distribute
their codes over a diversity of modules, such that each part of their workflows
runs on the most suitable hardware (see Fig.2). A further goal is to facilitate
the adoption of new computing technologies in HPC. Therefore — though not yet
implemented in existing platforms — the concept includes the option of integrat-
ing future technologies such as neuromorphic and quantum computing, providing

68 E. Suarez et al.

seamless integration into a traditional HPC environment in order to enable their
use in scientific workflows.

3 Current Hardware Platforms

Several MSA platforms have been deployed at JSC. Here two systems are
described, showing how the architecture itself evolves with time employing the
newest available technologies.

3.1 JURECA Cluster-Booster

In November 2017, with the deployment of its booster module, the JURECA
cluster-booster system became the first modular supercomputer worldwide to
be listed in the Top 500 list, reaching position 29 with the Linpack benchmark
running over both partitions [7]. Both modules can obviously be operated sepa-
rately, but what makes JURECA unique is that complex applications can also
run across both, using it as one MSA system.

While the cluster uses multicore processors (Intel Xeon Haswell) and
100 Gb/s Mellanox (EDR) InfiniBand, the booster uses multi-core processors
(Intel Xeon Phi KNL) and 100 Gb/s Intel Omni-Path. Bridging the two dif-
ferent high-speed network technologies is possible in JURECA through a cus-
tomized development in the ParTec ParaStation Software Suite [8,9], which is
continuously researched and optimized.

3.2 DEEP-EST Prototype

The DEEP-EST project has built an MSA-prototype with three compute mod-
ules: cluster module (CM), extreme scale booster (ESB), and data analytics
module (DAM) — see Fig. 3. The main hardware characteristics of each module
are detailed in Table 1. It is worth noting that, unlike in JURECA, the DEEP-
EST booster is built using an GPU attached to an x86 CPU. As mentioned in
Sect. 2, the role of this host-CPU is reduced to an auxiliary function and it is
not intended to employ it for application computing.

The DAM module is intended to run the parts of applications dealing with large
amounts of data. Therefore, the DAM is provided with very large memory capac-
ity, combining both volatile and non-volatile technologies. Codes that can particu-
larly profit from such capabilities are those performing data-analytics, or running
machine learning or deep learning algorithms. The latter benefit also from accel-
eration devices containing tensor cores and support for mixed precision. For this
reason, the DAM contains both NVIDIA GPUs and Intel Stratix10 FPGA units.
With its variety of components the DAM is the module offering maximal flexibil-
ity. This comes at the prize of a higher energy consumption. However, since the
DAM is only used for small-scale problems its node-number can be kept low.

Additional to the three compute modules, the DEEP-EST prototype contains
two storage modules: the all-flash storage module (AFSM) and the hard-disk

Modular Supercomputing 69

Cluster Module Extreme Scale

(CM) Booster (ESB)
BN BN X BN
E$$N
L o o e NETWORK
—1—1—1 FEDERATION
===
~—~| |E-E
Scalable Storage | R fiR M
Service Module | S mms s
(SSSM)
(AFSM) (DAM)

All-Flash Data Analytics
Storage Module Module

Fig. 3. Schema and picture of the DEEP-EST prototype at JSC (as of March 2021,
fully installed).

Table 1. Key hardware features of the DEEP-EST MSA prototype.

DEEP-EST CM DAM ESB

Time of deployment |2019 2019 2020

Node count 50 16 75

CPU type Intel Xeon 6146 Intel Xeon 8260M Intel Xeon 4215

CPU codename Skylake Cascade Lake Cascade Lake

Cores @ frequency 12 @ 3.2GHz 24 @ 2.4GHz 8 @ 2.5 GHz

Accelerators per node | n.a 1x Nvidia V100 GPU 1x Nvidia V100 GPU
1x Intel Stratix10 FPGA

DDRAA4 capacity 192 GB 384 GB 48 GB

HBM capacity n.a 32 GB (GPU) 32 GB (GPU)

Node max. mem BW |256 GB/s 900 Gb/s (GPU) 900 GB/s (GPU)

NVM capacity n.a 2/3 TB n.a

NVMe/SATA SSD 512 GB 3TB 250 GB

Power/node 500 W 1600 W 500 W

Cooling warm-water Air Warm-water

Network technology |EDR-IB (100 Gb/s) |EXTOLL (100 Gb/s) EDR-IB (100 Gb/s)
Ethernet (40 Gb/s) EXTOLL (100 Gb/s)

Topology Fat-tree Switched 2D-torus tree/grid

based scalable storage module (SSSM), to enable fast I/O, run the file system
and provide external storage capabilities.

All the compute and storage modules have been already installed and are up-
and-running at JSC. The DEEP-EST prototype continues in operation beyond
the end of the EU-funding time-frame and runs in near-production environment.
It is being used for further development of the software stack and programming
model of MSA systems in the DEEP-SEA project [2], as well as to run applica-
tion tests to evaluate the benefits of its architecture and the functionality of its
software stack.

70 E. Suarez et al.

4 Software Environment

The previous section showed how the MSA can be realized with very different
hardware components. In fact, one could consider any heterogeneous computer as
an MSA-system, as long as it can be operated in such a way that individual appli-
cations can run over various kinds of nodes, and these can be scheduled and allo-
cated according to diverse application needs. Therefore, one could argue that the
MSA is more a software infrastructure enabling the dynamic operation of a het-
erogeneous computer, rather than the hardware architecture of the system itself.

The MSA software stack enables application developers to map the intrinsic
scalability patterns of their applications and workflows onto the hardware: highly
parallel code parts run on the large-scale, energy-efficient booster, while less
scalable code parts can profit from the high single-thread performance of the
cluster, or from the high memory capacity of the data-analytics module. Users
can freely decide how many nodes to use in each module, so that the highest
application efficiency and system usage can be achieved [10].

4.1 Scheduling

The scheduling software used in the current MSA systems is SLURM [11]. Hard-
ware heterogeneity is supported with SLURM’s job-pack functionality, which
provides semantics to express the amount of nodes to be reserved in each par-
tition of an heterogeneous platform. The same annotation enables a user to run
his/her workflow across nodes on different modules of an MSA system. However,
in its current implementation SLURM statically reserves all nodes for the whole
duration of the job, regardless of the fact that they are continuously used or
not. For example, for a workflow performing pre-processing on the cluster and
running then a long simulation on the booster, the nodes on the cluster will
be kept reserved (and idle) until the simulation finishes in the booster. This is
certainly not the wished behaviour on the MSA.

Extensions to the SLURM scheduler are therefore being implemented, aiming
at reserving and releasing nodes for a job-pack when necessary. The DEEP-EST
implementation relies on a new ---delay switch, which can be used to inform
the scheduler of the time-span between the start of one and the next job in a
job-pack. Based on this information, the reservation of the second module can
be started when it is actually needed, and not before. Further extensions to the
scheduling and resource managing system for MSA are envisioned within the
DEEP-SEA project.

4.2 Programming Environment

In order to facilitate portability, the MSA software stack aims at supporting
the hardware complexity, while providing all the needed functionality and facing
the application developers with the well-established interfaces and programming
models that they know and use in other HPC systems. Therefore, the MSA
programming paradigm is based on MPI. To support MSA-systems employing

Modular Supercomputing 71

different network technologies in different modules (such as JURECA) a gateway
protocol has been developed [12]. For application developers, this protocol is fully
transparent and hidden behind the MPT library.

The simplest way of running an application on an MSA system is using only
one module. Monolithic, highly scalable codes will actually likely run this way.
On the other hand, codes that perform multi-physics or multi-scale simulations
can run across compute modules and exchange data between them via MPL
This is the scenario displayed in Fig.4, where an MPI application running on
the cluster spawns part of its code to the booster.

Inter-Communicator

MPI_COMM_WORLD
®)

MPI_COMM_WORLD
A

Cluster Booster

Fig. 4. Scheme of an MPI application running on the cluster and spawning part of its
code to the booster.

MPI codes can be distributed over the MSA employing any of the collective
instructions in the MPI standard allowing to connect two MPI_Comm_World()
with each other. For instance, a subset of MPI tasks can collectively spawn a new
MPI_Comm_World() to another module via the instruction MPI_Comm_Spawn (). Its
inter-communicator connects the children to the parent processes and enables
transferring data between them. Similarly, two MPI_Comm World() running on
different MSA modules can be connected with each other via the instruction
MPI _Connect (). Furthermore, an MPI_Comm World() can be split into two by
using MPI_Split() and then send each one to a different module.

Arguably, splitting an MPI programm across modules is the most difficult way
of using an MSA system. Distributing workflows is much simpler since one does
not need to take care of the MPI communicators. In general, workflows use differ-
ent codes used to execute different actions after (or in parallel) to each other. For
example, a user may need to pre-process data before running a long simulation,
then perform data-reduction, and ultimately visualize the final result. Running
these codes on different modules consists simply on indicating to the scheduler on
which nodes to execute each step. In the SLURM language a workflow is named
a job-pack (see Sect.4.1), and a set of SLURM instructions enables running each
step on a different partition of module of an heterogeneous system.

Between the codes of a workflow data is currently transferred via the file-
system, which means that it is written onto the external storage in one step,

72 E. Suarez et al.

and then re-read in the next workflow-step. Taking into account the time and
power consumed in such write-read operations, this approach is not necessarily
the fastest, and certainly not the most scalable. Because of that, the DEEP-EST
project has investigated the potential implementation and benefits of directly
transferring data between workflow steps via MPI. The data can reside directly
at the node-memories or be stored in new kind of network-attached memory
devices [13].

5 Neuroscience Workflow on MSA

Computational neuroscience, in its attempt to better understand the human
brain via simulations, uses both multi-scale applications and complex workflows,
and should therefore profit from the MSA concept. To prove it, the DEEP-EST
project has studied the use of MSA for a neuroscientific workflow in which NEST
and Arbor (described in Sects.5.1 and 5.2, respectively) are the main compo-
nents. A schema of the workflow distribution on the DEEP-EST prototype is
given in Fig. 5.

SN g FE

L(({
w
w

Fig. 5. Distribution of the neuroscientific workflow (NEST, Arbor) on the architecture
of the DEEP-EST prototype.

Brain function involves the interaction of neurons located in different brain
areas. Therefore, spiking neural network models representing multiple brain
areas are becoming more and more popular in Computational Neuroscience. The
multi-area model [14] is an early brain-scale model at the resolution of single neu-
rons that incorporates experimental data defining the connections between neu-
rons, called synapses. It comprises approximately four million highly simplified

Modular Supercomputing 73

model neurons and on average 6000 incoming synapses per neuron. Recording
all neuronal activity — called spikes — for the entire duration of a simulation
could easily reach the terabyte data-volume range. Interpreting such data in a
meaningful way is even more challenging, also because experimental techniques
currently can only record spike activity of a small proportion of neurons in a
brain area, limiting the experimental data available for comparison to simula-
tion results.

Neuroscientists therefore also record mesoscale signals such as local field
potentials (LFP): A single micro-electrode or an array of micro-electrodes is
inserted into the brain tissue in order to record the electrical activity, especially
input currents, of all neurons in a volume roughly 1 mm in diameter. Due to the
use of highly simplified point neurons in, e.g., the multi-area model [14], LFP
signals cannot be obtained directly from simulations of that or similar models.

The Python package LFPy! enables the calculation of local field potentials
by driving simulations of uncoupled compartmental neuron models by the spike
output of point neuron network models [16]. This multi-scale simulation thus
allows for the comparison of LFP signals from brain-scale network models to
experimental data. As the simulation of brain-scale point neuron networks and
uncoupled compartmental neuron models create very different computational
loads, the prediction of LFPs from brain-scale models presents an important
neuroscience application for MSA systems such as the DEEP-EST prototype
(see Sect. 3.2).

With this target neuroscience application in mind we have investigated the
limits to NEST-Arbor co-simulation on the DEEP-EST prototype. Figure 6 illus-
trates the concept, while Sect. 5.1 and Sect. 5.2 describe the involved simulators
NEST? and Arbor?, respectively. The overall runtime of the multi-scale simula-
tion depends on the individual runtimes of the simulators and the latency of the
frequent collective MPI communication between CM and ESB.

5.1 NEST

NEST is a simulator for spiking neural network models that focuses on the
dynamics, size and structure of neural systems. In such networks neuron models
are typically simple: they do not account for any neuronal morphology and the
dynamics is governed by a small number of coupled differential equations, which
in some cases can even be exactly integrated [17]. This enables the simulation
of large-scale networks, where each compute node hosts many neurons and their
incoming synapses. As in biologically realistic models of the cortex each neuron
connects to a few thousand other neurons, an inherent bottleneck of the simula-
tion of such networks is the frequent communication of neuronal signals (spikes)
between compute nodes and the delivery of the spikes to their local targets.
Large-scale neural network simulations with NEST make use of a hybrid par-
allelization scheme combining MPI and OpenMP threads, where users typically

! Ifpy.readthedocs.io; github.com/LFPy/LFPy.
2 nest-simulator.org; nest-simulator.readthedocs.io; github.com/nest/nest-simulator.
3 arbor.readthedocs.io; github.com/arbor-sim/arbor.

http://www.lfpy.readthedocs.io
http://www.github.com/LFPy/LFPy
https://www.nest-simulator.org/
https://nest-simulator.readthedocs.io/en/v3.0/
http://github.com/nest/nest-simulator
http://arbor.readthedocs.io/
http://github.com/arbor-sim/arbor

74 E. Suarez et al.

am

Microcircuit model

7 22z <

Arbor/LFPy
MPI

ESB Cluster Module (CM)
Fig. 6. Multi-scale simulation of a brain-scale network and concurrent calculation of
LFPs as the target neuroscience application on the DEEP-EST prototype, requiring
frequent transfer of neuronal activity data from the cluster module (CM) to the extreme
scale booster (ESB) through collective MPI communication. Right: Simulation of the
multi-area model [14] at single-neuron level resolution on the CM using NEST. Each
area is represented by an adapted microcircuit model [15] with area- and layer-specific
population sizes. Blue triangles and red dots in the magnified microcircuit-model illus-
tration indicate two different types of neurons and their varying population sizes across
layers. Connectivity between areas is based on experimental data and varies depending
on source and target area as indicated by the connectivity matrix. Adapted from Fig. 1
and Fig. 4D in [14]. Left: Simulation of one of the areas at sub-neuronal resolution using
Arbor on the ESB, and continuous calculation of LFPs using LFPy. Morphologies of
the multi-compartment neuron models are based on experimental data. Neurons are
not connected as all spike input is obtained from the multi-area model simulation on
CM. Adapted from Fig.1 in [16]

define the network models and steer the simulations through the Python based
interface PyNEST [18]. A variety of neuron and synapse models are already
included in NEST but it also offers the possibility to define custom models
using the domain specific language NESTML [19]. NEST has an interface to
the Multi-Simulator Coordinator (MUSIC) [20], which enables multi-scale sim-
ulations. Besides, NEST’s refactored recording infrastructure [21] facilitates the
definition of communication interfaces to other simulators such as Arbor. The
NEST code is open source. All contributions to the code-base undergo review
and are automatically tested by a continuous integration system running the
NEST testsuite [22].

NEST is a simulator with versatile applications: from interactive explorations
of small-scale networks on laptops to simulations of brain-scale networks on
supercomputers. With the introduction of the 5g simulation kernel [23,24] the
scalability of NEST has extended even further with respect to both runtime and
memory usage, see Fig. 5.1.

Modular Supercomputing 75

2000 P —rrrr _ T
M
@ 1500 |- g 4 s 2 7]
° A 59 © =
g g 8 _W]
£ 1000 1 & i
: M—r‘f‘ i 41 .
& 500} 1 &£]
10° 10° 10* 10° 10 10° 10* 10°
MPI processes MPI processes

Fig. 7. Weak scaling of the NEST HPC benchmark on JUQUEEN for the current and
the previous simulation kernel (NEST 5g and 4g, respectively). CPU time and memory
usage per compute node for a network simulation for 1s of biological real time, where
each compute node hosts 18,000 neurons with 11,250 incoming synapses per neuron;
64% of all synapses have dynamically changing weights. Simulations were performed
using 1 MPI process per compute node and 8 threads per MPI process. Adapted from
Fig. 7 in [23].

The roadmap for the development of the simulation technology is defined
by the NEST Initiative*. Current work comprises performance profiling and
redesign of the algorithms underlying spike communication and spike delivery,
and the development of more efficient ways of handling neuronal populations.
This enables faster construction and simulation of highly structured networks
such as the multi-area model (Fig. 7).

5.2 Arbor

Arbor is a performance-portable library for simulation of large networks of
morphologically-detailed neurons on modern high-performance computing sys-
tems [25,26]. Arbor simulates networks of spiking neurons, particularly multi-
compartment neurons. In these networks, the interaction between cells is con-
veyed by spikes and gap junctions and the multi-compartment neurons are char-
acterized by axonal delays, synaptic functions and cable trees. Each cell is mod-
elled as a branching, one-dimensional electrical system with dynamics derived
from the balance of transmembrane currents with axial currents that travel
through the intracellular medium, and with ion channels and synapses repre-
sented by additional current sources. Arbor additionally models leaky integrate-
and-fire cells and proxy spike sources.

The Arbor library is an active open source project, written in C++14 and
CUDA using an open development model. It can scale from laptops to the largest
HPC clusters using MPI. The on-node implementation is specialized for GPUs,
vectorized multicore, and Intel KNL with a modular design for enabling exten-
sibility to new computer architectures, and employs specific optimizations for
these GPU and CPU implementations. The GPU is deployed for updating cur-
rents and integrating gating variables using an optimized parallel GPU solver for

4 nest-initiative.org.

http://nest-initiative.org/

76 E. Suarez et al.

sparse matrices with an optimized memory layout and reduced memory access.
In detail, the GPU solver uses fine grained parallelization with one dendrite
branch per thread, and a cell distribution into CUDA blocks to avoid global
synchronization. In the simulation setup work balancing per thread avoids idle
threads by sorting all submatrices on a level in a block by size. To maximize
the utilization of the GPU memory bandwidth the memory layout is optimized
by storing data in an interleaved format for each branch. Memory read access is
reduced by storing only one parent compartment for each branch (Fig. 8).

10m |- 4 30

wall time (s)

—o— Arbor-mc
—a— Arbor-gpu
—— Neuron

064 128 256 512 1k 2k 4k 8k
cells

Fig. 8. Performance of Arbor. Left: Single node wall time of Arbor running on Piz Daint
multicore, GPU and Tave KNL. Right: The single node speedup of Arbor running on
Piz Daint multicore and GPU relative to NEURON on multicore. Adapted from Fig. 5
in [14].

By implementing the design goals of scalability, extensibility and performance
portability, Arbor is an order of magnitude more efficient than existing simula-
tion engines [25]. Arbor does this without sacrificing ease of use and flexibility.
Arbor’s single node speedup performance has been analyzed using a randomly
connected network benchmark employing CSCS’ Piz Daint multicore, GPU and
KNL clusters. For more than 4,000 cells the GPU is utilized enough to run the
benchmark more efficiently in terms of the wall time than on multicore or KNL
(Fig. 5.2, left panel). Compared to NEURON [27], the most widely used software
for general simulation of networks of multi-compartment cells, Arbor is 5-10x
faster for fewer than 128 cells, and for more than 256 cells it is over 20x faster
(Fig. 5.2, right panel).

Benchmarking and validation of Arbor and other simulators can be performed
with the NSuite performance and validation testing suite® which is on-going
work in Arbor development. Full support for the SONATA [28] model exchange
format is under active development, as well as a Python API. Arbor will provide
APIs for integration with other tools and simulators, including co-simulation
with NEST. On a technical level a NEST-Arbor two-way coupled co-simulation
imply some specific challenges, e.g., enabling injection of external spikes, as well
as new initiation steps to align time delays and the number of external cells.

5 nsuite.readthedocs.io; github.com/arbor-sim /nsuite.

http://www.nsuite.readthedocs.io
http://www.github.com/arbor-sim/nsuite

Modular Supercomputing 77

6 Summary

The Modular Supercomputing Architecture (MSA) proposes a new philosophy
for the integration and use of heterogeneous computing resources. Instead of
regarding acceleration devices as intra-node entities and using them to speed-up
very concrete kernels of the codes executed on general-purpose host-CPUs, the
MSA strives for operating accelerators as first-class, autonomous compute ele-
ments. The MSA segregates the heterogeneous resources into individual modules,
each one being a multi-node platform of potentially large size tailored to specific
kinds or parts of applications. Each module can be sized differently, according
to the energy efficiency of the hardware and the needs of the users. At the same
time, applications and workflows can be distributed over different modules using
the overarching MSA software environment, enabling each step to be executed
on the best suited hardware.

The field of Computational Neuroscience is already preparing to employ the
MSA approach, targeting the DEEP-EST prototype with a workflow that com-
bines the codes NEST and Arbor. This multi-scale neuronal network simula-
tion connects two types of neuronal simulations that are fundamentally different
in computational load, memory access behaviour, and communication require-
ments.

A simulation of the multi-area model with NEST is not particularly com-
putationally costly as it involves only the update of simple model neurons. In
such large-scale network simulations it is rather the frequent and unpredictable
exchange of neuronal signals that imposes stress on MPI communication and
memory access, and thus dominates the total runtime. The cluster module is
therefore best suited for this type of simulation.

For the Arbor simulation of multi-compartment neurons the computational
costs per neuron are much higher than for a large-scale point-neuron network
simulated with NEST. At the same time, the communication of spikes is of
minor importance for the overall runtime of the Arbor simulation because it is
much smaller in terms of number of neurons. In the planned application, the
compartmental neurons are not even connected and communication of neuronal
signals within Arbor is thus not required. Therefore, the Arbor simulation is more
compute bound and can benefit from the GPUs of the DEEP-EST booster.

The installation of the DEEP-EST prototype has been completed with the
deployment of its third and last module — the booster — in early 2020. NEST and
Arbor have been adapted to run on the prototype, to show the benefits of execut-
ing an important neuroscientific workflow across the modules of an MSA plat-
form. Adaptations to NEST and Arbor include the development of correspond-
ing interfaces for spike exchange between the simulators, using MPI laying the
groundwork for the neuroscience workflow (Sect.5). Co-simulation benchmarks
show that spiking network simulations with NEST running on the cluster module
can be extended such that spikes generated in NEST drive compartmental neu-
rons simulated with Arbor on the booster module without runtime penalty [29].
Moreover, the simulation time of NEST has been significantly reduced by opti-
mizing the spike-delivery algorithm hiding memory fetch latency [29], which

78 E. Suarez et al.

contributes to more efficient co-simulation. We consider the optimizations a gen-
erally useful contribution to large-scale network simulation as they are applicable
to other simulators for pulse-coupled networks with high connection degrees.

Acknowledgements. S. Kunkel and H.E. Plesser thank the NEST developer commu-
nity and Arbor developers for excellent collaboration. A. Kiisters would like to thank
Wouter Klijn and Ben Cumming for contributing to Sect.5.2. With many thanks to
the Arbor developers Nora Abi Akar, Benjamin Cumming, Felix Huber, Wouter Klijn,
Alexander Peyser and Stuart Yates, as well as the SimLab Neuroscience at the Jiilich
Supercomputing Centre.

E. Suarez thanks all the institutions and individuals involved in the DEEP projects,
who have contributed to the development of the MSA architecture, its prototype hard-
ware implementations and its software environment.

Funding. This work has been partially funded by the European Union’s Seventh
Framework (FP7/20017-2013) and Horizon 2020 Framework Programmes for Research
and Innovation under grant agreements 287530 (DEEP), 610476 (DEEP-ER), 754304
(DEEP-EST), 720270 (HBP SGA1), and 785907 (HBP SGA2). The present publica-
tion reflects only the authors’ views. The European Commission is not liable for any
use that might be made of the information contained therein.

The Arbor library is developed by the Swiss National Supercomputing Center and
the Jiilich Supercomputing Center under the auspices of the Human Brain Project,
funded from the European Union’s Horizon 2020 Framework Programme for Research
and Innovation under the Specific Grant Agreement No. 720270 (Human Brain Project
SGA1) and Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

The authors also gratefully acknowledge the funding provided by the Helmholtz
Programme Supercomputing € Big Data to realize the JURECA Cluster and Booster.

References

1. Becker, D.J., Sterling, T., Savarese, D., Dorband, J.E., Ranawak, U.A., Packer,
C.V.: BEOWULF: a parallel workstation for scientific computation. In: Proceed-
ings International Conference on Parallel Processing, vol. 95 (1995). http://www.
phy.duke.edu/~rgb/brahma/Resources/beowulf/papers/ICPP9I5 /icpp95.html

2. DEEP projects. http://www.deep-projects.eu

3. Eicker, N., Lippert, T., Moschny, T., Suarez, E.: The DEEP project - an alternative
approach to heterogeneous cluster-computing in the many-core era. Concurrency
Comput. Pract. Experience 28, 2394-2411 (2016). https://doi.org/10.1002/cpe.
3562

4. Suarez, E., Eicker, N., Lippert, T.: Supercomputer evolution at JSC.
In: Proceedings NIC Symposium, vol. 49, p. 1-12 (2018). http://juser.fz-
juelich.de/record /844072

5. Suarez, E., Eicker, N.; Lippert, Th.: Modular supercomputing architecture: from
idea to production. In: Vetter, J.S. (ed.) Contemporary High Performance Com-
puting: From Petascale Toward Exascale, ch. 9, vol. 3, pp. 223-251. CRC Press
(2019). https://juser.fz-juelich.de/record /862856

6. Eicker, N., Lippert, T.: An accelerated cluster-architecture for the exascale. In:
PARS 2011, PARS-Mitteilungen, vol. 28, pp. 110-119 (2011)

http://www.phy.duke.edu/~rgb/brahma/Resources/beowulf/papers/ICPP95/icpp95.html
http://www.phy.duke.edu/~rgb/brahma/Resources/beowulf/papers/ICPP95/icpp95.html
http://www.deep-projects.eu
https://doi.org/10.1002/cpe.3562
https://doi.org/10.1002/cpe.3562
https://juser.fz-juelich.de/record/862856

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Modular Supercomputing 79

Krause, D., Thornig, P.: JURECA: modular supercomputer at Jiilich supercom-
puting centre. J. Large-Scale Res. Facil. 4 (2018). https://doi.org/10.17815/jlsrf-
4-121-1

ParaStationV5. http://www.par-tec.com/products/parastationv5.html

Clauss, C., et al.: Allocation-internal co-scheduling - interaction and orchestration
of multiple concurrent MPI sessions. In: Advances in Parallel Computing, vol. 28,
pp. 46-68. I0S Press BV (2017)

Kreuzer, A., et al.: Application Performance on a Cluster-Booster System. In: 2018
IEEE International Parallel and Distributed Processing Symposium Workshops
(2018). https://doi.org/10.1109/TPDPSW.2018.00019

SLURM. https://slurm.schedmd.com/

Eicker, N., Galonska, A., Hauke, J., Niissle, M.: Bridging the DEEP gap - imple-
mentation of an efficient forwarding protocol. Intel European Exascale Labs -
Report 2013, vol. 1, pp. 34-41 (2014). http://juser.fz-juelich.de/record /171982
Schmidt, J.: Network attached memory, Chapter 4 of the Ph.D. thesis, Acceler-
ating Checkpoint/Restart Application Performance in Large-Scale Systems with
Network Attached Memory, Ruprecht-Karls University Heidelberg (Fakultat fir
Mathematik und Informatik). http://archiv.ub.uni-heidelberg.de/volltextserver/
23800/1/dissertation_juri_schmidt_publish.pdf

Schmidt, M., Bakker, R., Hilgetag, C.C., Diesmann, M., van Albada, S.J.: Multi-
scale account of the network structure of macaque visual cortex. Brain Struct.
Funct. 223(3), 1409-1435 (2017). https://doi.org/10.1007/s00429-017-1554-4
Potjans, T.C., Diesmann, M.: The cell-type specific cortical microcircuit: relating
structure and activity in a full-scale spiking network model. Cereb. Cortex 24(3),
785-806 (2014). https://doi.org/10.1093/cercor /bhs358

Hagen, E., Naess, S., Ness, T.V., Einevoll, G.T.: Multimodal modeling of neural
network activity: computing LFP, ECoG, EEG, and MEG signals with LFPy 2.0.
Front. Neuroinform. 12, 92 (2018). https://doi.org/10.3389/fninf.2018.00092
Rotter, S., Diesmann, M.: Exact digital simulation of time-invariant linear systems
with applications to neuronal modeling. Biol. Cybern. 81(5-6), 381-402 (1999).
https://doi.org/10.1007/s004220050570

Eppler, J.M., Helias, M., Muller, E., Diesmann, M., Gewaltig, M.O.: PyNEST:
a convenient interface to the NEST simulator. Front. Neuroinform. 2, 12 (2009)
https://doi.org/10.3389/neuro.11.012.2008

Plotnikov, D., Rumpe, B., Blundell, I., Ippen, T., Eppler, J.M., Morrison, A.:
NESTML: a modeling language for spiking neurons. In: Modellierung 2016, Lecture
Notes in Informatics (LNI), pp. 93-108 (2016) https://doi.org/10.5281/zenodo.
1412345

Djurfeldt, M., et al.: Run-time interoperability between neuronal network simu-
lators based on the music framework. Neuroinformatics 8, 43-60 (2010). https://
doi.org/10.1007/s12021-010-9064-z

Eppler, J.M., Peyser, A., Schenck, W.: The NESTio project - replacement
data recording backend for NEST. In: NEST Conference (2017). juser.fz-
juelich.de/record /842049

Eppler, J.M., Kupper, R., Plesser, H.E., Diesmann, M.: A testsuite for a neu-
ral simulation engine. Front. Neuroinform. Conference Abstract Neuroinformatics
(2009). https://doi.org/10.3389/conf.neuro.11.2009.08.042

Jordan, J., et al.: Extremely scalable spiking neuronal network simulation code:
from laptops to exascale computers. Front. Neuroinform. 12, 2 (2018). https://doi.
org/10.3389/fninf.2018.00002

https://doi.org/10.17815/jlsrf-4-121-1
https://doi.org/10.17815/jlsrf-4-121-1
http://www.par-tec.com/products/parastationv5.html
https://doi.org/10.1109/IPDPSW.2018.00019
https://slurm.schedmd.com/
http://juser.fz-juelich.de/record/171982
http://archiv.ub.uni-heidelberg.de/volltextserver/23800/1/dissertation_juri_schmidt_publish.pdf
http://archiv.ub.uni-heidelberg.de/volltextserver/23800/1/dissertation_juri_schmidt_publish.pdf
https://doi.org/10.1007/s00429-017-1554-4
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.3389/fninf.2018.00092
https://doi.org/10.1007/s004220050570
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.5281/zenodo.1412345
https://doi.org/10.5281/zenodo.1412345
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.3389/conf.neuro.11.2009.08.042
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.3389/fninf.2018.00002

80

24.

25.

26.

27.

28.

29.

E. Suarez et al.

Linssen, C., et al.: NEST 2.16.0 Zenodo (2018). https://doi.org/10.5281/zenodo.
1400175

Akar, N.A., et al.: Arbor — a morphologically-detailed neural network simula-
tion library for contemporary high-performance computing architectures. In: Pro-
ceedings of 27th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pp. 274-282 (2019). https://doi.org/10.1109/
EMPDP.2019.8671560

Akar, N.A., et al.: arbor-sim/arbor: Arbor Library v0.2 Zenodo (2019). https://
doi.org/10.5281/zenodo.2583709

Carnevale, T.N., Hines, M.L.: The Neuron Book. Cambridge University Press
(2006). https://doi.org/10.1017/CBO9780511541612

Dai, K., et al.: The SONATA data format for efficient description of large-scale net-
work models. bioRxiv 625491 (2019, in preprint). https://doi.org/10.1101/625491
Kreuzer, A., et al.: DEEP-EST deliverable D1.5: final report on applications expe-
rience (2021). https://www.deep-projects.eu/project/deliverables.html

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.5281/zenodo.1400175
https://doi.org/10.5281/zenodo.1400175
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.5281/zenodo.2583709
https://doi.org/10.5281/zenodo.2583709
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1101/625491
https://www.deep-projects.eu/project/deliverables.html
http://creativecommons.org/licenses/by/4.0/

	Modular Supercomputing for Neuroscience
	1 Introduction
	2 The Modular Supercomputing Architecture (MSA)
	3 Current Hardware Platforms
	3.1 JURECA Cluster-Booster
	3.2 DEEP-EST Prototype

	4 Software Environment
	4.1 Scheduling
	4.2 Programming Environment

	5 Neuroscience Workflow on MSA
	5.1 NEST
	5.2 Arbor

	6 Summary
	References

