001     867462
005     20220930130224.0
024 7 _ |a 10.1016/j.tplants.2019.10.015
|2 doi
024 7 _ |a 1360-1385
|2 ISSN
024 7 _ |a 1878-4372
|2 ISSN
024 7 _ |a 2128/23764
|2 Handle
024 7 _ |a altmetric:72367343
|2 altmetric
024 7 _ |a pmid:31806535
|2 pmid
024 7 _ |a WOS:000503380300011
|2 WOS
037 _ _ |a FZJ-2019-06102
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Tracy, Saoirse R.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Crop Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1577947995_24370
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Root systems determine the water and nutrients for photosynthesis and harvested products, underpinning agricultural productivity. We highlight 11 programs that integrated root traits into germplasm for breeding, relying on phenotyping. Progress was successful but slow. Today’s phenotyping technologies will speed up root trait improvement. They combine multiple new alleles in germplasm for target environments, in parallel. Roots and shoots are detected simultaneously and nondestructively, seed to seed measures are automated, and field and laboratory technologies are increasingly linked. Available simulation models can aid all phenotyping decisions. This century will see a shift from single root traits to rhizosphere selections that can be managed dynamically on farms and a shift to phenotype-based improvement to accommodate the dynamic complexity of whole crop systems.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Nagel, Kerstin A.
|0 P:(DE-Juel1)129373
|b 1
|u fzj
700 1 _ |a Postma, Johannes A.
|0 P:(DE-Juel1)144879
|b 2
|u fzj
700 1 _ |a Fassbender, Heike
|0 P:(DE-Juel1)129397
|b 3
|u fzj
700 1 _ |a Wasson, Anton
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Watt, Michelle
|0 P:(DE-Juel1)166460
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.tplants.2019.10.015
|g p. S1360138519302845
|0 PERI:(DE-600)2011003-0
|n 1
|p 105-118
|t Trends in plant science
|v 25
|y 2020
|x 1360-1385
856 4 _ |u https://juser.fz-juelich.de/record/867462/files/621861ab-fd61-496c-887d-874b2c28d5cc.pdf
856 4 _ |u https://juser.fz-juelich.de/record/867462/files/Invoice_OAD0000017737.pdf
856 4 _ |u https://juser.fz-juelich.de/record/867462/files/cbb03e79-c2a2-4d01-9271-2761875bed6c.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/867462/files/1-s2.0-S1360138519302845-main.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/867462/files/621861ab-fd61-496c-887d-874b2c28d5cc.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/867462/files/Invoice_OAD0000017737.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/867462/files/cbb03e79-c2a2-4d01-9271-2761875bed6c.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/867462/files/1-s2.0-S1360138519302845-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:867462
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129373
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144879
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129397
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166460
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRENDS PLANT SCI : 2017
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b TRENDS PLANT SCI : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1120
|2 StatID
|b BIOSIS Reviews Reports And Meetings
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21