000867507 001__ 867507
000867507 005__ 20210131031041.0
000867507 0247_ $$2doi$$a10.1109/TMTT.2019.2893639
000867507 0247_ $$2ISSN$$a0018-9480
000867507 0247_ $$2ISSN$$a1557-9670
000867507 0247_ $$2WOS$$aWOS:000460660900011
000867507 0247_ $$2Handle$$a2128/24171
000867507 0247_ $$2altmetric$$aaltmetric:30784826
000867507 037__ $$aFZJ-2019-06130
000867507 082__ $$a620
000867507 1001_ $$00000-0003-0887-5146$$aSolgun, Firat$$b0
000867507 245__ $$aSimple Impedance Response Formulas for the Dispersive Interaction Rates in the Effective Hamiltonians of Low Anharmonicity Superconducting Qubits
000867507 260__ $$aNew York, NY$$bIEEE$$c2019
000867507 3367_ $$2DRIVER$$aarticle
000867507 3367_ $$2DataCite$$aOutput Types/Journal article
000867507 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575460786_7072
000867507 3367_ $$2BibTeX$$aARTICLE
000867507 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867507 3367_ $$00$$2EndNote$$aJournal Article
000867507 520__ $$aFor superconducting quantum processors consisting of low anharmonicity qubits such as transmons, we give a complete microwave description of the system in the qubit subspace. We assume that the qubits are dispersively coupled to a distributed microwave structure such that the detunings of the qubits from the internal modes of the microwave structure are stronger than their couplings. We define “qubit ports” across the terminals of the Josephson junctions and “drive ports” where transmission lines carrying drive signals reach the chip and we obtain the multiport impedance response of the linear passive part of the system between the ports. We then relate interaction parameters in between qubits and between the qubits and the environment to the entries of this multiport impedance function; in particular, we show that the exchange coupling rate J between qubits is related in a simple way to the off-diagonal entry connecting the qubit ports. Similarly, we relate couplings of the qubits to voltage drives and lossy environment to the entries connecting the qubits and the drive ports. Our treatment takes into account all the modes (possibly infinite) that might be present in the distributed electromagnetic structure and provides an efficient method for the modeling and analysis of the circuits.
000867507 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000867507 588__ $$aDataset connected to CrossRef
000867507 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David P.$$b1$$eCorresponding author
000867507 7001_ $$00000-0002-4620-0978$$aGambetta, Jay M.$$b2
000867507 773__ $$0PERI:(DE-600)2028238-2$$a10.1109/TMTT.2019.2893639$$gVol. 67, no. 3, p. 928 - 948$$n3$$p928 - 948$$tIEEE transactions on microwave theory and techniques$$v67$$x1557-9670$$y2019
000867507 8564_ $$uhttps://juser.fz-juelich.de/record/867507/files/08633444.pdf$$yRestricted
000867507 8564_ $$uhttps://juser.fz-juelich.de/record/867507/files/08633444.pdf?subformat=pdfa$$xpdfa$$yRestricted
000867507 8564_ $$uhttps://juser.fz-juelich.de/record/867507/files/1712.08154.pdf$$yOpenAccess
000867507 8564_ $$uhttps://juser.fz-juelich.de/record/867507/files/1712.08154.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867507 909CO $$ooai:juser.fz-juelich.de:867507$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867507 9101_ $$0I:(DE-588b)36225-6$$60000-0003-0887-5146$$aRWTH Aachen$$b0$$kRWTH
000867507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b1$$kFZJ
000867507 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000867507 9141_ $$y2019
000867507 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867507 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000867507 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867507 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T MICROW THEORY : 2017
000867507 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867507 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867507 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867507 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867507 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867507 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867507 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867507 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867507 920__ $$lyes
000867507 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000867507 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x1
000867507 980__ $$ajournal
000867507 980__ $$aVDB
000867507 980__ $$aUNRESTRICTED
000867507 980__ $$aI:(DE-Juel1)PGI-11-20170113
000867507 980__ $$aI:(DE-Juel1)PGI-2-20110106
000867507 9801_ $$aFullTexts