001     867507
005     20210131031041.0
024 7 _ |a 10.1109/TMTT.2019.2893639
|2 doi
024 7 _ |a 0018-9480
|2 ISSN
024 7 _ |a 1557-9670
|2 ISSN
024 7 _ |a WOS:000460660900011
|2 WOS
024 7 _ |a 2128/24171
|2 Handle
024 7 _ |a altmetric:30784826
|2 altmetric
037 _ _ |a FZJ-2019-06130
082 _ _ |a 620
100 1 _ |a Solgun, Firat
|0 0000-0003-0887-5146
|b 0
245 _ _ |a Simple Impedance Response Formulas for the Dispersive Interaction Rates in the Effective Hamiltonians of Low Anharmonicity Superconducting Qubits
260 _ _ |a New York, NY
|c 2019
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1575460786_7072
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For superconducting quantum processors consisting of low anharmonicity qubits such as transmons, we give a complete microwave description of the system in the qubit subspace. We assume that the qubits are dispersively coupled to a distributed microwave structure such that the detunings of the qubits from the internal modes of the microwave structure are stronger than their couplings. We define “qubit ports” across the terminals of the Josephson junctions and “drive ports” where transmission lines carrying drive signals reach the chip and we obtain the multiport impedance response of the linear passive part of the system between the ports. We then relate interaction parameters in between qubits and between the qubits and the environment to the entries of this multiport impedance function; in particular, we show that the exchange coupling rate J between qubits is related in a simple way to the off-diagonal entry connecting the qubit ports. Similarly, we relate couplings of the qubits to voltage drives and lossy environment to the entries connecting the qubits and the drive ports. Our treatment takes into account all the modes (possibly infinite) that might be present in the distributed electromagnetic structure and provides an efficient method for the modeling and analysis of the circuits.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a DiVincenzo, David P.
|0 P:(DE-Juel1)143759
|b 1
|e Corresponding author
700 1 _ |a Gambetta, Jay M.
|0 0000-0002-4620-0978
|b 2
773 _ _ |a 10.1109/TMTT.2019.2893639
|g Vol. 67, no. 3, p. 928 - 948
|0 PERI:(DE-600)2028238-2
|n 3
|p 928 - 948
|t IEEE transactions on microwave theory and techniques
|v 67
|y 2019
|x 1557-9670
856 4 _ |u https://juser.fz-juelich.de/record/867507/files/08633444.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/867507/files/08633444.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/867507/files/1712.08154.pdf
856 4 _ |u https://juser.fz-juelich.de/record/867507/files/1712.08154.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:867507
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 0000-0003-0887-5146
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)143759
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T MICROW THEORY : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21