001     867511
005     20210130003745.0
024 7 _ |a 10.1088/2058-9565/ab18dd
|2 doi
024 7 _ |a 2128/23540
|2 Handle
024 7 _ |a altmetric:52157232
|2 altmetric
024 7 _ |a WOS:000467483300001
|2 WOS
037 _ _ |a FZJ-2019-06134
082 _ _ |a 530
100 1 _ |a Ciani, A
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Hamiltonian quantum computing with superconducting qubits
260 _ _ |a Philadelphia, PA
|c 2019
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1575454238_8508
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We consider how the Hamiltonian Quantum Computing scheme introduced in (2016 New J. Phys. 18 023042) can be implemented using a 2D array of superconducting transmon qubits. We show how the scheme requires the engineering of strong attractive cross-Kerr and weak flip-flop or hopping interactions and we detail how this can be achieved. Our proposal uses a new electric circuit for obtaining the attractive cross-Kerr coupling between transmons via a dipole-like element. We discuss and numerically analyze the forward motion and execution of the computation and its dependence on coupling strengths and their variability. We extend (2016 New J. Phys. 18 023042) by explicitly showing how to construct a direct Toffoli gate, thus establishing computational universality via the Hadamard and Toffoli gate or via controlled-Hadamard, Hadamard and CNOT.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Terhal, Barbara
|0 P:(DE-Juel1)174062
|b 1
|u fzj
700 1 _ |a DiVincenzo, David
|0 P:(DE-Juel1)143759
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1088/2058-9565/ab18dd
|g Vol. 4, no. 3, p. 035002 -
|0 PERI:(DE-600)2906136-2
|n 3
|p 035002 -
|t Quantum science and technology
|v 4
|y 2019
|x 2058-9565
856 4 _ |u https://juser.fz-juelich.de/record/867511/files/Ciani_2019_Quantum_Sci._Technol._4_035002.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/867511/files/Ciani_2019_Quantum_Sci._Technol._4_035002.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2019-05-07. Available in OpenAccess from 2020-05-07.
|u https://juser.fz-juelich.de/record/867511/files/1812.00454.pdf
856 4 _ |y Published on 2019-05-07. Available in OpenAccess from 2020-05-07.
|x pdfa
|u https://juser.fz-juelich.de/record/867511/files/1812.00454.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:867511
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)143759
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21