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The characteristic impedance of a microwave transmission line is typically constrained to a value

Z0 = 50 �, in part because of the low impedance of free space and the limited range of permittivity

and permeability realizable with conventional materials. Here we suggest the possibility of constructing

high-impedance transmission lines by exploiting the plasmonic response of edge states associated with the

quantum Hall effect in gated devices. We analyze various implementations of quantum Hall transmission

lines based on distributed networks and lumped-element circuits, including a detailed account of parasitic

capacitance and Coulomb drag effects, which can modify device performance. We additionally conceive

of a metamaterial structure comprising arrays of quantum Hall droplets and analyze its unusual properties.

The realization of such structures holds promise for efficiently wiring-up quantum circuits on chip, as well

as engineering strong coupling between semiconductor qubits and microwave photons.

DOI: 10.1103/PhysRevApplied.12.014030

I. INTRODUCTION

Specifying the impedance of radiofrequency or micro-

wave circuits greatly simplifies their analysis by making

use of scattering matrices, rather than geometry-specific

solutions to Maxwell’s equations [1]. Motivated by prac-

tical aspects, the characteristic impedance of transmis-

sion lines (TLs) is today largely standardized to a value

of Z0 = 50 or 75 �, enabling the seamless integration

of electrical components. Forgoing practicality, however,

much more fundamental considerations suggest that Z0

cannot be set too far from this value. The fine structure

constant, for instance, establishes the impedance of free

space at (Z ≈ 377 �), with dielectrics or magnetic mate-

rials then modifying the characteristic impedance by a

limited amount, commensurate with their relative permit-

tivity or permeability. Going beyond these constraints, the

large inductance of an array of superconducting Josephson

junctions has recently been exploited to yield microwave

resonators and transformers with impedances of a few

kilo-ohms [2–4], and devices based on surface-wave prop-

agation in carbon nanotubes [5–7] and on thin disordered

superconductors [8–10] have been realized.

*bosco@physik.rwth-aachen.de

For circuits operating in the mesoscale or quantum

domain, the impedance of a conductor supporting a single

ballistic mode is given by the quantum of resistance,

defined by the von Klitzing constant, RK ≈ 25.8 k�

[11], which is far from the typical values of Z0 used in

microwave engineering and above what has been real-

ized with recent superconducting implementations [3,4].

If it were possible to make use of ballistic conductors to

establish high-impedance transmission lines, they would

provide a means of efficiently wiring up quantum circuits

on chip without the use of bulky, narrow-band impedance

transformers, which limit, for example, the performance

of qubit readout detectors [12]. In fact, a high impedance

also leads to a high voltage per photon, and consequently

can enable enhanced electrostatic coupling between dis-

tributed resonator structures and qubits. This enhancement

is particularly appealing for semiconductor-based quantum

computing, where the qubits generally have an inconve-

niently small charge dipole, making it hard to achieve the

strong-coupling regime, where the photon-qubit coupling

strength is higher than the losses in the resonator or the

qubit.

In this paper, we propose and analyze low-loss, high-

impedance microwave transmission lines and resonator

structures realized using the plasmonic response of a sys-

tem in the quantum Hall (QH) regime, where transport is
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supported by only a few conducting channels. To avoid

dissipation, the QH material cannot be ohmically con-

tacted to the external electrodes, but instead it should

be reactively coupled [13–19]. Here, we consider only a

capacitive coupling between the electrodes and the QH

material where transport is associated with edge magneto-

plasmons (EMPs)—charge-density excitations that travel

with a velocity some 1000 times slower than the speed of

light in vacuum [20–26].

Realizing transmission-line structures extends the

tool-kit of useful quantum Hall devices available to

address the challenges of quantum information processing

[27–31]. The chirality of these devices, for example, can

be exploited to implement miniaturized, scalable nonre-

ciprocal devices such as gyrators and circulators [13–16]

that are broadly used for manipulation of qubits and back-

action mitigation. Other passive implementations are also

possible [32].

In what follows we adopt a simple phenomenological

model inspired by Ref. [13], and analyze the physics of

QH-based transmission lines. We discuss various possible

implementations using gate electrodes, including com-

pact devices that mimic branching transmission lines or

“stubs.” These interferometric structures can be tuned to

create on-chip impedance-matching networks and com-

pact delay lines. Our model is extended to account for

effects associated with parasitic capacitance, back gate,

and interacting edge states that produce Coulomb drag. In

addition, we show how by cascading patterns of quantum

Hall droplets a peculiar kind of metamaterial can be real-

ized with exotic band structure. These chains of cascaded

droplets enable transmission lines of arbitrary length and

shape. Of further interest, for frequencies that correspond

to the band gap of the metamaterial, transmission abruptly

drops to zero, analogous to perfect Bragg reflection in

a crystal. Such devices may have application in creat-

ing compact on-chip microwave filters with nonreciprocal

properties.

II. DISTRIBUTED TRANSMISSION LINE

In this section, we focus on the device shown in Fig. 1. A

two-dimensional electron gas in the quantum Hall regime

is capacitively coupled to four ideal metal electrodes of

length Li that are placed at a distance di from the edge.

Capacitances of a few hundreds of femtofarads have been

experimentally measured in such structures [15,25]. In

principle, each electrode can be driven independently by

a voltage Vi applied with respect to ground; however, we

assume that only the terminals 1 and 2 can be externally

driven, while the others are not connected directly to a

source, but they are either grounded or left floating. Conse-

quently, we will refer to the pairs 1,2 and 3,4, respectively,

as driving and screening electrodes. We neglect for now

the parasitic capacitive coupling between the electrodes,

FIG. 1. Sketch of a quantum Hall transmission line. Four ideal

electrodes of length Li are placed at a distance di from the edge of

a two-dimensional QH droplet; the capacitive coupling between

the material and the ith lead is quantified by the velocities vi.

Each electrode can in principle be driven by a voltage Vi applied

with respect to ground or by a current Ii. The position in the mate-

rial is parameterized by the coordinates (x, y), which are normal

and tangential to the perimeter, respectively. li and ri indicate the

left and right edges of the ith electrode, respectively. We refer to

the pair of electrodes 1,2 (3,4) as driving (screening) electrodes.

which can be straightforwardly included a posteriori, and

whose effects are discussed in Sec. II C.

In general, the motion of the excess charge density ρ

localized at the edge of a dissipationless QH droplet and

moving along the perimeter is described in the frequency

domain by [13,26,33]

iωρ(y, ω) = ∂y [v(y)ρ(y, ω)] + σxy∂yVa(y, ω), (1)

where Va(y, ω) is the Fourier transform of the applied

time-dependent drive, σxy = ν/RK is the off-diagonal con-

ductivity of the QH material, and v is the propagation

velocity as function of the position y along the edge,

accounting for the screening of Coulomb interactions due

to the presence of the electrodes. The filling factor ν

is an integer number in the (integer) QH regime. This
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model captures the dynamics of low-frequency edge exci-

tations [the edge magnetoplasmons (EMPs)] in experi-

mental setups based on a wide range of materials, for

example GaAs [15,24,25], monolayer graphene [34–36]

and magnetically doped thin films of Bi-Se compounds

[16]. In particular, the Bi-Se compounds are of particular

technological interest because the (anomalous) QH regime

can be reached even without an external magnetic field

[16,37,38].

A detailed discussion of the validity of Eq. (1) can

be found in Refs. [26] and [33]. Here, we mention that

the equation of motion (1) holds as long as the two-

dimensional electron gas remains in the QH regime and

this requirement limits the maximum frequency of oper-

ation and the power-handling capability of QH-effect

devices. In particular, these devices need to work in the

microwave domain, where the frequencies of operation

are in the gigahertz regime, much lower than the bulk

mobility gap of the QH material that is typically in the

terahertz regime. In addition, the total current flowing in

the two-dimensional electron gas should be kept below a

critical value Ic, typically of a few micro-amperes in GaAs

[39] and of a few hundreds of nanoamperes in state-of-

the-art anomalous QH materials [38]. In these materials,

the maximal power Pc ≈ I 2
c /(4σxy) that can be inserted

in the device is approximately −50 dBm and −70 dBm,

respectively.

Above these values of Ic, the current is not carried only

by the edge states, but it also flows in the bulk of the QH

material, which has a finite real-valued longitudinal con-

ductivity σxx [40]. We believe that σxx is the main source

of dissipation in these systems; in fact, because of σxx, the

EMPs have a finite lifetime and the device is lossy. An esti-

mation of the lifetime of the EMPs is presented in Ref. [33]

and the effect of realistic values of σxx on the response of

capacitively coupled nonreciprocal QH devices is analyzed

in Ref. [14]. These losses remain small in the QH regime,

and so we will neglect them in this paper. Additional

sources of dissipation, such as imperfections in the dielec-

tric or in the electrodes, can be minimized by optimizing

the fabrication process and are not addressed here.

The total current flowing into the ith electrode is

obtained by integrating the displacement current density

over its area. In the model presented here, we neglect fring-

ing fields and, because the EMP charge density is assumed

to be localized in an infinitesimally narrow stripe along the

edge, the integral over the area of the electrode simplifies

into the one-dimensional integral [26,33]

Ii(ω) = −iω

∫ ri

li

dyρ(y, ω), (2)

where li and ri are the left and right edges of the ith

electrode, respectively.

Note that in the setup chosen all parts of the perimeter

of the droplet are coupled to some external electrode. This

choice guarantees that the EMP velocity v has no loga-

rithmic singularity in the long-wavelength limit [20] and,

when di/Li ≪ 1, it allows one to use a simple piecewise

decomposition for the velocity function v(y), with constant

velocity vi in the region coupled to the ith electrode [33].

The fringing of the electromagnetic field that smooths v(y)

in a region of length approximately equal to di close to the

edge of the electrodes is discussed in Ref. [13]; because its

effect on the response is small when di/Li ≪ 1, we neglect

it here. The velocity vi depends on the local capacitive cou-

pling between the edge of the quantum Hall material and

the ith metal gate, and it is given by [13,15,25,33]

vi =
σxy

ci

. (3)

The capacitance per unit length ci can be approximated by

[20,22,33]

ci = ǫS ×
{

2π/log (2di/l) when di ≫ l,

l/di when di ≪ l,
(4)

where ǫS is the dielectric constant of the medium and l is

the characteristic width of the EMPs in the bulk direction,

typically determined by the length over which the con-

ductivity profile changes from zero to the bulk value. For

example, in conventional quantum Hall devices with atom-

ically defined edges, l corresponds approximately to the

magnetic length
√

�/(eB) [33]. When di ≫ l, the expres-

sion of ci in Eq. (4) corresponds to the typical capacitance

per unit length of an infinitely long wire with radius l dis-

placed by a distance di from a metal electrode, while in

the opposite limit di ≪ l, we recover the familiar capac-

itance of two parallel metal plates (see, e.g., Ref. [41]).

Considering the devices in experiments based on various

materials, including GaAs [15,24,25], graphene [34–36],

and anomalous QH materials [16], we find that vi is of the

order 105 m/s.

With this piecewise approximation and using Eqs. (1)

and (2), one can compute a 4 × 4 terminal-wise admittance

matrix with elements

Yii = −
σxy

2

[

1 + i cot

(

ω

2

∑

k

τk

)]

×
(

1 − eiωτi
)

(

1 − eiω
∑

k �=i τk

)

, (5a)

Yij =
σxy

2

[

1 + i cot

(

ω

2

∑

k

τk

)]

×
(

1 − eiωτi
) (

1 − eiωτj
)

e
iωτ

�

ij . (5b)

This matrix relates the currents (I1, I2, I3, I4) to the cor-

responding driving voltages measured with respect to a
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common ground. We introduced the timescales

τi ≡
Li

vi

=
ciLi

σxy

, (6)

that characterize the time spent by an EMP to travel along

the ith electrode, see Eq. (3), and τ
�

ij that specifies the total

time required for traveling in the anticlockwise direction

from the left edge of electrode i (li) to the right edge of

electrode j (rj ), see Fig. 1. By using the typical value of

the EMP velocity vi ∼ 5 × 105 m/s, measured in GaAs

[15,24,25] and in anomalous QH materials [16], we obtain

the propagation time τi ∼ 0.1 ns for electrodes of length

Li = 50 µm.

Note that Eq. (5) defines a valid terminal admittance

matrix that satisfies the requirements
∑

i Yij =
∑

j Yij = 0,

derived from Kirchhoff’s laws. Now that we have a lin-

ear relation between applied voltages and currents, we can

straightforwardly apply the preferred boundary conditions

to the screening electrodes.

Before examining in detail the different situations, we

can gain additional insights into the physics of these

devices by noting that the admittance of the circuit model

in Fig. 2 exactly reproduces Eq. (5). The finite time spent

by an EMP for traveling through the ith electrode leads

to the presence in this circuit model of delay lines with

FIG. 2. Circuit equivalent of the QH droplet in Fig. 1. The cir-

cuit is composed of an ideal anticlockwise circulator with char-

acteristic impedance 1/(2σxy) and scattering matrix S� [Eq. (8)]

that connects in series four delay lines with frequency-dependent

impedance Zi [Eq. (7)]. Each delay line is a transmission line with

characteristic impedance 1/(2σxy) and propagation time τi termi-

nated by an open circuit, and it models the capacitive coupling

between the QH material and the ith electrode.

impedance

Zi(ω) = −
i

2σxy

cot
(ωτi

2

)

. (7)

This equation is the well-known input impedance of a TL

terminated by an open circuit [42]. Also, it is possible to

show that if we add additional electrodes, then this cir-

cuit model is straightforwardly generalized by adding the

corresponding delay lines.

The chiral propagation of the EMP (in the anticlockwise

direction when vi > 0) is captured by the presence in the

model of an ideal circulator: a nonreciprocal device that

cyclically routes the signal from one port to the next one in

the direction fixed by the arrow. With our unconventional

ordering of the electrodes, the microwave scattering matrix

of this component is

S� =







0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0






, (8)

and it relates the outgoing voltage waves V out to the

incoming ones V in, defined for the ith terminal by

Vi = V in
i + V out

i , (9a)

Ii =
1

2σxy

(V in
i − V out

i ). (9b)

We note that while the S matrix is generally used as a port

matrix, here, for convenience, we use it as a terminal-wise

quantity by measuring all the voltages Vi with respect to a

common ground.

The characteristic impedance of the delay lines and of

the circulator are proportional to 1/σxy , and therefore, in

the quantum Hall regime and for low filling factors, they

can be of the order of the quantum of resistance RK ≈
25.8 k�. Also, from Fig. 2, it is evident that the full

transmission of a signal from terminal 1 to terminal 2 is

possible only at the frequencies for which the two delay

lines Z1,2(ω) act as a short,

Z1,2(ωn) = 0, i.e.,
ωnτ1,2

2π
=

1

2
+ n, (10)

while when they act as an open,

Z1,2(ωm) → ∞, i.e.,
ωmτ1,2

2π
= m, (11)

the device would be perfectly reflecting (here n, m ∈ N0).

Depending on how the screening gates are treated, the

response can change drastically; we now examine in more

detail different situations and we verify when the device

can mimic a conventional TL. In analogy to conventional

transmission lines such as microstrip lines [42], we begin
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by studying a setup where the screening electrodes are

grounded. To better understand the effect of these boundary

conditions, we also analyze the response of a device where

these terminals are left floating. Interestingly, we find that

the scattering parameters obtained in this case are equiva-

lent to the ones derived in Ref. [13], where the screening

electrodes are pushed far away from the edge of the QH

material. We then study in detail the effect of the capaci-

tive coupling between different terminals, and we conclude

that the grounded setup is more resilient against these par-

asitics. To conclude this section, we discuss the advantages

of using a back gate and the role of additional plasmonic

modes and of Coulomb drag in these devices.

A. Grounded screening electrode

We now analyze the response of the device when

the screening electrodes are grounded. The resulting port

admittance is immediately obtained by restricting to the

upper 2 × 2 block of the terminal admittance Eq. (5).

Many features of the response can be deduced directly

by inspecting the circuit in Fig. 2 with the terminals 3, 4

connected to ground. First of all, it is apparent that at the

frequencies ωn that satisfy the condition in Eq. (10), a

full transmission between port 1 and 2 is achieved when

the reflection at the circulator is minimized, i.e., when the

characteristic impedance of the external circuit matches

1/(2σxy). In this case, the additional delay lines 3, 4 simply

add a frequency-dependent phase to the transmitted signal;

for example, if Z3(ωn) = 0, a voltage wave traveling from

port 2 to 1 acquires a phase shift of π when it is reflected

at the ground, while if Z3(ωn) → ∞, the voltage wave

acquires no additional phase since it is reflected at an open.

Voltage waves propagating in asymmetric configura-

tions, e.g., where the ratio τ3/τ4 is chosen appropriately

to satisfy simultaneously Z3(ωn) = 0 and Z4(ωn) → ∞ at

the frequency ωn defined in Eq. (10), pick up an opposite

phase depending on the direction they come from. This

interesting property can be exploited to implement nonre-

ciprocal devices such as the gyrators proposed in Refs. [13]

and [43]. In this paper, however, we are mainly interested

in reciprocal devices, and thus we restrict our analysis to

symmetric setups and we require τ3 = τ4 ≡ τ0, such that

the device is reciprocal at any frequency.

For this symmetric device, it is particularly instructive

to use conventional microwave techniques to convert the

port admittance matrix into a transfer (ABCD) matrix (see,

e.g., Ref. [42]). The resulting matrix T can be decomposed

into a product of the three transfer matrices that are easy to

recognize:

T =
(

1 Z1

0 1

)





cos (ωτ0)
i sin (ωτ0)

2σxy

2σxy i sin (ωτ0) cos (ωτ0)





(

1 Z2

0 1

)

.

(12)

FIG. 3. Transmission line with a series double-stub tuner. This

circuit is equivalent to a QH droplet with the screening electrodes

characterized by the same propagation time τ0 and connected to

ground; the transmission in this region is modeled by a conven-

tional TL with a characteristic impedance 1/(2σxy). The capac-

itive coupling to the driving electrodes is modeled by two stubs

(TLs terminated with an open circuit) also having a characteristic

impedance of 1/(2σxy) and a propagation time τ1,2.

For simplicity of notation, we have dropped here the

explicit dependence on frequency of the impedance Z1,2,

defined in Eq. (7), and of the transmission matrix. This

decomposition suggests that the symmetric device acts like

a conventional TL cascaded with two “stub tuners” hav-

ing impedance Zi, as shown in Fig. 3. The characteristic

impedance of the TL and of the stubs is 1/(2σxy), while

the propagation constants are βi = ωτi/Li. This circuit is

the dual to the parallel double-stub tuner, which is often

used in microwave engineering (see, e.g., Secs. 5.2 and 5.3

of Ref. [42]).

We now analyze the main features of this device. First,

by conventional microwave techniques, we can convert the

transfer matrix in Eq. (12) into the scattering S parameters

S11 = 1 − S12 (T22 + Z0T21) , (13a)

S22 = 1 − S12 (T11 + Z0T21) , (13b)

S12 = S21 =
2Z0T21

(T11 + Z0T21) (T22 + Z0T21) − 1
. (13c)

Here, Z0 is the characteristic impedance of the external cir-

cuitry and S12 = S21 because the device is reciprocal. For

simplicity, we also restrict to a more symmetric case and

set τ1 = τ2; then, Z1(ω) = Z2(ω), T11 = T22 and S11 = S22.

The response strongly depends on the impedance match-

ing parameter α and on the ratio of propagation times p ,

defined respectively by

α = 2σxyZ0, (14a)

p = 2
τ0

τ1

. (14b)

Here, Z0 is the characteristic impedance of the external

circuitry connected to the QH device. Note that p can

be tuned in different ways, for example by modifying the

lengths of screening and driving electrodes; in this case,

the larger p , the longer the TL.
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FIG. 4. Scattering parameters of a QH droplet with grounded

and identical screening electrodes. In the plots, we consider the

device to be matched to the external circuitry, i.e., α = 2σxyZ0 =
1 and we assume a symmetric configuration τ1 = τ2. The dif-

ferent plots are obtained by using different ratios of propagation

times p = 2τ0/τ1. The blue (red) solid line is the absolute value

of the scattering parameter associated with reflection (transmis-

sion) |S11| (|S12|); the dashed lines are the envelope functions

that modulate the response obtained by the limit τ0 → 0; they

capture the response of a configuration with floating screening

electrodes, as described in Sec. II B. The envelope functions of

|S11| vanish at the central resonances ωn (black crosses) defined

in Eq. (10), and they attain the maximum value of one at the

frequencies ωm (black circles) defined in Eq. (11). The fast oscil-

lations depend on the transmission line and they are associated

with the resonances at the frequencies ωl (orange dots) defined

in Eq. (15).

Let us now focus on the S parameters of an impedance-

matched setup, with α = 1. In Fig. 4, we show the fre-

quency dependence of the absolute values of the scattering

parameters. For convenience, we restrict our analysis to

integer values of p because in this case the S parame-

ters are periodic in frequency with period ω = 2π/τ1; we

stress, however, that perfect transmission can be achieved

for any real value of p . The S parameters are characterized

by fast oscillations modulated by a smooth envelope func-

tion. This envelope function is attained by taking the limit

τ0 → 0, which corresponds to an infinitesimal length of the

screening electrodes and therefore captures the response of

the two equal stubs with impedance Z1(ω).

Also, as expected, the envelope function of |S11| drops

to zero at the frequencies ωn for which the condition in Eq.

(10) is satisfied, while it reaches the maximum value of

one at the frequencies ωm when the opposite condition (11)

holds. This indicates that at these frequencies the device is

perfectly transmitting and perfectly reflective, respectively.

In Fig. 4, we mark ωn and ωm with black crosses and black

circles, respectively; we will refer to the frequencies ωn

defined in Eq. (10) as the central resonances.

The fast oscillations are caused by the transmission

line. In particular, they are associated with the resonances

occurring at the frequencies

ωl =
π

τ0

(

1

2
+ l

)

=
2π

pτ1

(

1

2
+ l

)

, (15)

at which the input impedance of the transmission-line seg-

ment would vanish if it was isolated with open boundary

conditions; here l ∈ N0. The frequencies ωl are marked

with orange dots in Fig. 4. There are exactly ⌈p⌉ of such

resonances per period of the envelope function (⌈x⌉ indi-

cates the ceiling of x). Note that away from ωn, the exact

frequency of these fast resonances differs from ωl because

of the influence of the delay lines Z1(ω).

Interestingly, the response at the central resonances ωn

presents qualitatively different behavior depending on the

parity of p . When p is even, the transmission coeffi-

cient is real S12 = (−1)p/2 and the reflection increases

linearly in ω, with the same slope as the smooth mod-

ulating function. In contrast, when p is odd, one of the

fast TL resonances occurs exactly at the frequency ωn.

In this case, the transmitted signal acquires an imaginary

phase S12 = (−i)p and additionally ωn becomes a sweet

spot at which both S11 and its first derivative in frequency

vanish, increasing the bandwidth of the device. Varying

p as a real parameter from odd to even, one observes

a transition between the two situations: close to ωn, the

reflection parameter, to linear order in frequency, simpli-

fies into S11 ≈ i
(

1 + e−iπp
)

(ω − ωn)τ1/4, and thus the

slope of |S11| continuously oscillates as a function of p

from the minimal value 0, when p is odd, to the maximal

value of τ1/2, when p is even.

Because we are mostly interested in TLs where the

screening electrodes are much longer than the driving ones,

we will now focus on the large p limit, where the difference

between the two situations is small. Note, however, that the

parameter p depends also on the ratio of EMP velocities vi,

given in Eq. (3), in the screening and driving regions, and

therefore it can be tuned also by modifying the capacitive

coupling to the corresponding electrodes, for example, by

bringing the electrodes closer to the quantum Hall edge in

one region. Also, more importantly, we anticipate that the

parity of p has interesting consequences when more QH

droplets are cascaded, as described in Sec. III.

When p is large, the bandwidth of the device becomes

independent of p and can be estimated from the slope of the

smooth function modulating |S11|. Expanding this function

to linear order in frequency in the vicinity of ωn, we find


ω

ωn

=
4

π(1 + 2n)

∣

∣Smax
11

∣

∣ . (16)

Here, 
ω is the broadening of the envelope function

of |S11| close to ωn, as shown in Fig. 4. The linear
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FIG. 5. Phase of the transmission parameter S12. The device is

matched to the external circuitry, i.e., α = 1, and the screening

electrodes are identical. Also, we consider τ1 = τ2. The different

plots are obtained by using different ratios of propagation times

p . The solid red lines show the phase of the scattering param-

eter of a QH droplet with grounded screening electrodes, while

the red dashed lines show the phases of the envelope function

that modulates the response, and they are obtained by taking the

limit τ0 → 0; these dashed lines capture the response of the setup

described in Sec. II B. The dotted black lines are obtained by

using the linear expansion of the phase in Eq. (17).

approximation for the bandwidth is quite accurate, giv-

ing an error below 3% up to relative high reflection

|S11| � 0.4.

In Fig. 5, we show the phase of the scattering parameter

S12 associated with the transmission for different values of

p in a matched setup with α = 1. Close to the central res-

onance peaks, the phase of S12 is almost linear in the first

period of the envelope function and is well approximated

by

arg(S12)

π
≈

1

2
− (1 + p)

ωτ1

2π
. (17)

Equation (17) is a sum of two contributions: the phase

accumulated in a conventional transmission line and the

phase accumulated in the two stubs, i.e., arg(S12) =
arg(STL

12 ) + 2 arg(SST
12 ). In particular, a matched TL, char-

acterized by a propagation time τ0 = pτ1/2, has an

off-diagonal scattering matrix with STL
12 = e−iωτ0 ; thus

arg(STL
12 ) = −pωτ1/2. The phase accumulated in each

stub, close to the central resonances, where Sii ≈ 0, is

given by arg(SST
12 ) ≈ (π − ωτ1)/4; the phase of the enve-

lope function is twice this value, i.e., 2 arg(SST
12 ). Note

that a phase that changes linearly in frequency implies

that the device is not dispersive and thus the transmitted

voltage wave preserves the original shape, with a delay

time of (1 + p)τ1/2, as one can see by an inverse Fourier

transform of V out(ω) = S12(ω)V in(ω).

Let us now discuss a concrete example. We study a

QH droplet made of GaAs and assume for simplicity that

the EMP propagation velocity is constant along the edge

and given by vi = 5 × 105 m/s [15,24,25]. We also con-

sider two equal driving electrodes of length L1 = L2 =
50 µm and two equal screening electrodes of length L3 =
L4 = 150 µm, see Fig. 1. In this setup, we obtain τ1 =
τ2 = 0.1 ns and τ0 = 0.3 ns, and so p = 6. The abso-

lute value and the phase of the S parameters are shown

in Figs. 4 and 5, respectively. From Eqs. (10), (16), and

(17), it follows that this device mimics an ideal, distor-

tionless transmission line at the frequencies ωn/(2π) =
5(1 + 2n) GHz. Also, within a bandwidth 
ω/(2π) ≈
637 MHz, the reflection coefficient |S11| of this device

remains below 10%, corresponding to an insertion loss

equal to −20 log10 |S21| < 0.044 dB.

To conclude our analysis, we mention here that adding

two additional stubs in series with a TL is a well-known

procedure to match different impedances [42]; this means

that by appropriately choosing the propagation times τ1

and τ2, the input impedance Zin(ω) of this device can be

tuned to match different loads at the desired frequency of

operation. In particular, if we terminate port 2 with a load

ZL(ω) to ground, it is straightforward to verify that the

input impedance seen at port 1 is

zin(ω)=
csc2(ωτ0)

zL(ω) + z2(ω) − i cot(ωτ0)
− i cot(ωτ0)+ z1(ω),

(18)

where, for simplicity of notation, we introduced the

dimensionless impedances zj (ω) ≡ 2σxyZj (ω). Decom-

posing these impedances into their real and imaginary

parts zj = z′
j + iz′′

j , we obtain from Eq. (18) the following

conditions on z′′
1,2:

z′′
1(ω) = z′′

in(ω) + cot(ωτ0) ±

√

z′
in

z′
L

[csc2(ωτ0) − z′
Lz′

in],

(19a)

z′′
2(ω) = −z′′

L(ω) + cot(ωτ0) ±

√

z′
L

z′
in

[csc2(ωτ0) − z′
Lz′

in].

(19b)

Therefore, when τ0 is fixed, the real parts of the input

and load impedances are bounded by the inequality

0 ≤ z′
L(ω)z′

in(ω) ≤ csc2(ωτ0), (20)

which determines the range of load impedances that can be

matched with a given input impedance by this circuit.

This device can be used to match a real load of the order

of the quantum of resistance z′
L ≈ 1 to a much smaller real

input zin = z′
in ≪ 1, provided that the propagation times
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τ0,1,2 are chosen to satisfy the inequality in Eq. (20) and

the equalities in Eq. (19) at the frequency of operation.

For example, let us consider a QH droplet as in Fig. 1

made of GaAs, where the terminal 1 is connected to a

microwave circuit with impedance 50 � and the terminal

2 is terminated by a real load ZL = 1/(2σxy) ≈ 12.9/ν k�

to ground. When ν = 1, and considering a frequency of

operation of 1 GHz, the two loads are matched and the

devices are reflectionless when τ0 ≈ 0.25 ns, τ1 ≈ 0.24 ns,

and τ2 ≈ 0.01 ns. Assuming for simplicity that the EMPs

propagate with a constant velocity vi = 5 × 105 m/s along

the edge, we obtain that the two loads are matched and

the devices are reflectionless when L3 = L4 ≈ 125 µm,

L1 ≈ 120 µm, and L2 ≈ 5 µm.

Because the impedance mismatch is high, this construc-

tion has a low bandwidth and, in particular, we find that

the reflection remains below 10% only for 
ω/(2π) ≈
0.13 MHz. In analogy to Ref. [43], we expect the band-

width to scale as the square of the ratio of impedances, and

so a higher bandwidth can be obtained by using materi-

als with a higher filling factor ν because if ZL ∝ 1/ν, then


ω ∝ ν2. Alternatively, we believe that the bandwidth can

be improved by using a tapered construction (see, e.g.,

Chapters 5.5, 5.6, and 5.7 of Ref. [42]) and, for example,

by using a cascade of M droplets, the mth of which matches

the input impedance Zin
m = Z0 + m/(2σxyM ) to the closer

output impedance Zout
m = Z0 + (m + 1)/(2σxyM ) = Zin

m+1,

but we did not analyze this setup quantitatively.

B. Floating screening electrodes

Here, we study what happens when the two screening

electrodes are left floating. In this case, the port admittance

matrix can be derived from the terminal admittance in Eq.

(5) by first computing the values of screening potentials

V3,4 (as a function of the driving potentials V1,2) that guar-

antee I3 = I4 = 0 and then using these results to construct

the 2 × 2 port admittance matrix. Proceeding as before, we

convert this port admittance into a transfer matrix and we

find that the resulting ABCD matrix exactly corresponds to

the limit τ0 → 0 of Eq. (12).

The circuit model in Fig. 3 is then modified by consid-

ering only the series of the two delay lines with impedance

Z1(ω) and Z2(ω). This result can be understood by observ-

ing that when the screening electrodes are left floating, no

net current flows into them, and thus they cannot contribute

to the response of the device. For this reason, in contrast

to the case described in Sec. II A, this device is always

reciprocal for any value of τ3,4. Comparing with Ref. [13],

one realizes that this boundary condition also mimics the

response of the device when the regions 3 and 4 are not

coupled to screening electrodes.

Also, the scattering parameters of this device are exactly

given by the envelope functions discussed in Sec. II A

and whose absolute values, when α = 1, are shown with

dashed lines in Fig. 4; at the central resonances, the trans-

mitted and incident voltage waves always have the same

phase.

Finally, by taking the limit τ0 → 0 in Eq. (18), one gets

zin(ω) = zL(ω) + z1(ω) + z2(ω), (21)

from which it follows that the real part of the input

impedance is always equal to the real part of the load

impedance, and thus this construction cannot be used for

impedance matching.

C. Parasitics

The capacitive coupling between adjacent electrodes is

known to strongly influence the response of QH circulators

and gyrators [14,15,43]. For this reason, we now analyze

how the TL is affected by these parasitics. We consider

the augmented circuit model shown in Fig. 6, where we

include all the possible parasitic couplings, except for the

one that directly connects the driving terminal 1 and 2;

this contribution is negligible in the limit of long screening

electrodes.

The network of parasitic capacitors is in parallel to the

transmission line and so the terminal admittance in Eq. (5)

FIG. 6. Equivalent circuit model including parasitic capacitors.

The circuit equivalent of the QH droplet in Fig. 2 is augmented

by a parallel circuit that includes the possible capacitive coupling

between external electrodes and ground; we do not include the

coupling C12 between the driving terminals because it is negli-

gible for long TLs. Some of these additional capacitors modify

the response in a qualitatively similar manner and they are thus

drawn with the same color. Following the notation of the main

text, the gray, red, green, and blue capacitors are associated with

the charging times T0, T1, T2, and T3, respectively.
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modifies as

Y → Y + YP, (22)

with

(YP)ii = iω
∑

j �=i

Cij + iωCiG, (23a)

(YP)ij = −iωCij . (23b)

The two-port admittance is obtained from this aug-

mented admittance using the same procedure described in

Sec. II B, and from the resulting matrix we straightfor-

wardly obtain the S parameters. We assume again that the

characteristic impedances of the external circuit Z0 and of

the QH device are matched, i.e., α = 1.

We begin our analysis by focusing only on the capac-

itances that connect the screening electrodes to ground,

C3G, C4G. For simplicity, we take them to be equal and we

introduce the timescale T0 ≡ C3G/(2σxy) that characterizes

the charging time of these capacitors.

The effect of T0 can be understood by realizing that

in the limiting cases, T0 → ∞ and T0 → 0, the response

of the device reduces to that described in Secs. II A and

II B, respectively. For finite values of T0, the S parameters

interpolate between those of the two configurations; in par-

ticular, for small T0, Fano-like resonances begin to appear

on top of the envelope function and, as T0 is increased,

they smoothly evolve to the features shown in Fig. 4. Also,

for finite T0, the response is not periodic in frequency any-

more: in particular, in the high-frequency limit ωT0 ≫ 1

the screening electrodes always act like they are shorted to

ground.

We divide the remaining parasitic capacitors into a

few groups exhibiting a qualitatively similar behavior. We

study them separately and we show the differences in the

limits T0 → 0 and T0 → ∞ that correspond to floating and

grounded screening electrodes, respectively. These groups

of capacitors are shown with different colors in Fig. 6.

We focus now on the capacitor C34 that connects oppo-

site screening electrodes and we introduce the charg-

ing time T1 ≡ C34/(2σxy). Clearly T1 does not affect the

response of the device when ωT0 ≫ 1, but it strongly

influences the performance in the opposite limit. Figure 7

shows how the absolute values of the S parameters change

from the ideal case when the screening electrodes are left

floating (T0 = 0) for a small variation of T1/τ1 = 0.05,

and for different values of the ratio of propagation time p ,

defined in Eq. (14b).

First, note that the central resonances, defined with-

out parasitics by Eq. (10), are shifted to lower frequency

and that the corresponding bandwidth decreases; for small

enough T1/τ1, the shifted resonance frequencies ω̃n are

FIG. 7. Changes in the scattering parameters of a QH droplet

due to a small value of the parasitic capacitor C34 ≡ 2σxyT1. In

the plots, the screening gates are assumed to be floating, i.e., T0 =
0, and we consider the device to be matched with the external cir-

cuitry α = 1 and symmetric, i.e., τ1 = τ2 and τ3 = τ4 = τ1p/2.

The different plots show the scattering parameters for different

values of p . The blue (red) solid line represents the absolute

value of |S11| (|S12|) when T1/τ1 = 0.05, while the dashed lines

show the response in the same configuration in the case without

parasitics.

approximately given by

(ω̃n − ωn)τ1

4π(1 + 2n)
≈ −

T1

τ1

+ 4

[

1 + π(−1)n

(

1

2
+ n

)](

T1

τ1

)2

.

(24)

In contrast, the resonances ωm associated with perfect

reflections, defined without parasitics by Eq. (11), are

not affected by T1: when the driving impedances act as

open circuits, voltage waves are always reflected back,

regardless of how the screening electrodes are connected.

Also, for a finite T1, the screening electrodes begin to

affect the response because of the finite net current flowing

into them. In particular, when p > 1, the scattering param-

eters present additional Fano-like resonances that are asso-

ciated with the limit Z3,4(ω) → ∞, when the screening

electrodes act like open circuits; there are ⌈(p − 1)/2⌉
such resonances in the first period. As T1 increases, these

peaks are shifted to lower frequency but, in contrast to

what happens to the central resonance, their broadening

increases.

Note that these resonances are qualitatively different

from the ones examined in Sec. II A; in fact, they are

not modulated by a smoother function, but their ampli-

tudes range from the minimal value of 0 to the maximal

value of 1. For this reason, when the screening electrodes

are left floating, a finite T1 strongly degrades the perfor-

mances of long devices with p ≫ 1. In this case, coupling
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FIG. 8. Changes in the scattering parameters of a QH droplet

due to a large value of the parasitic capacitor C34 ≡ 2σxyT1. In

the plots we used the same conventions as in Fig. 7, but the solid

lines are now obtained by using a higher value of the parasitic

capacitor, T1/τ1 = 10.

the screening electrodes to ground by a finite T0 provides

some advantages. In fact, when T0 increases, the S param-

eters gradually return the structure shown in Fig. 4: the

resonances ω̃n are shifted back to ωn and their bandwidth

is restored, and the amplitudes of the additional Fano res-

onances recover the original modulation; also, the ⌈p/2⌉
peaks associated with the limit Z3,4(ω) → 0 appear and all

the ⌈p⌉ resonances discussed in Sec. II A are recovered.

It is also interesting to consider what happens when the

ratio T1/τ1 is large, and the two screening electrodes are

shorted together and left floating. As discussed before, as

T1/τ1 increases, the resonances are shifted to lower fre-

quencies, but the broadening of the central and the Fano

resonances decreases and increases, respectively, until the

peaks become comparable. Then, depending on the parity

of p , we arrive at different limiting situations, as shown

in Fig. 8. Interestingly, for even p , the device is perfectly

reflecting at the original central resonance frequencies ωn.

This can be understood by realizing that at these frequen-

cies all the electrodes act as short circuits; thus a voltage

wave coming from one of the driving terminals travels

back to the same terminal through the short connecting the

two screening electrodes. Also, note that the limit T1 → ∞
can be used to model the effect of a back gate that covers

the whole device, as discussed in Sec. II D.

We focus now on the capacitances that connect the driv-

ing electrodes to ground, C1G, C2G. Again, we assume them

to be equal and we introduce the corresponding charging

time T2 ≡ C1G/(2σxy). These capacitors just degrade the

performance of the device, regardless of how the screen-

ing electrodes are connected to ground. In particular, when

we increase T2, the central resonances are shifted to higher

frequencies ω̃n, according to

(ω̃n − ωn)τ1

4π(1 + 2n)
≈

T2

2τ1

+
(

T2

τ1

)2

, (25)

and at the same time their bandwidth decreases until, for

high enough T2/τ1 ≫ 1, all the current flows to ground

and the device stops working. The additional resonance

peaks associated with the current flowing in the screening

electrodes have qualitatively the same behavior.

Finally, we examine the effect of the capacitances con-

necting adjacent electrodes C13, C14, C23, C24, and we take

them to be equal and parameterized by the charging time

T3 ≡ C13/(2σxy). If the screening electrodes are grounded,

these capacitors simply connect the driving terminals to

ground in the same way as C1G does, and so T3 and T2

have the same effect on the response of the device. In con-

trast, if the screening electrodes are floating, the response

is affected in a way that resembles more the effect of T1.

In particular, for small T3, the central resonance peak is

shifted to a lower frequency, approximately as in Eq. (24)

with T1 → T3 and also the bandwidth shrinks in a sim-

ilar way; additionally, Fano resonances begin to appear

due to the finite amount of current flowing in the screen-

ing electrodes. However, there is an important difference

between the effect of T1 and T3: in this configuration, when

Z1(ω) → ∞ and the driving electrodes act as open cir-

cuits, a finite current can still flow to the opposite terminal

through the parasitic capacitance. Therefore, in contrast to

what happens for T1, the device is not perfectly reflecting

at the frequencies ωm in Eq. (11): as T3 increases, these

peaks are shifted to lower frequencies. This consideration

leads to a very different limit when T3/τ1 is large. In this

situation, the device acts like a capacitor connecting the

two driving terminals and it perfectly transmits the sig-

nal, except for residual resonances where the transmission

drops and the reflection increases. Interestingly, when the

value of T0 is large, one obtains the opposite result and the

device behaves as a perfect reflector, as shown in Fig. 9.

D. Back gate

The transmission line shown in Fig. 1 has two distinct

screening electrodes coupled to the edges of the QH mate-

rial. An alternative way of realizing a TL with similar

features is to replace the two screening electrodes with

a single back gate. We comment here on how the circuit

model in Fig. 2 is modified in this case.

Because there is only a single screening gate, the most

apparent change is that the screening terminals are always

shorted together. This short can be modeled as a very high

value of the parasitic capacitor C34 ∝ T1 → ∞ shown in

Fig. 6. From the discussion in Sec. II C, it appears more

convenient to connect the back gate to ground, so that

C34 has no effect, and thus here we analyze only this

configuration.
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(a) (b)

FIG. 9. Changes in the scattering parameters of a QH droplet

due to the parasitic capacitors connecting adjacent electrodes

C13 = C14 = C24 = C24 ≡ 2σxyT3. In these plots, we assume

α ≡ 2σxyZ0 = 1 and a symmetric configuration with τ1 = τ2 and

τ3 = τ4 = τ1p/2. Here, we set p = 1. In (a) and (b) we con-

sider screening gates that are floating (T0 → 0) and connected

to ground (T0 → ∞), respectively. The blue (red) solid line rep-

resents the absolute value of |S11| (|S12|) when T3/τ1 = 1, while

the dotted lines are obtained for T3/τ1 = 0.1.

Additionally, we assume for simplicity that the contri-

bution to the velocity due to the screening of the back gate

vB is constant in the whole device, and so v3 = v4 = vB.

If the back gate extends below the whole QH material, the

motion of the EMPs in the driving regions 1 and 2 is also

affected by its presence. The additional screening in these

regions causes some interesting differences in the response;

in particular, the equation of motion (1) is modified in two

ways.

First, the EMP velocities v1,2 in Eq. (3) are renormalized

by vB: the renormalized velocities ṽ1,2 are lower than v1,2

and they can be estimated by [33]

ṽ1,2 =
1

1/v1,2 + 1/vB

. (26)

Secondly, vB also modifies the inhomogeneous driving

term of the equation of motion that now reads

σxy∂yVa(y, ω) → σxy∂y

[(

1 −
ṽ(y)

vB

)

Va(y, ω)

]

. (27)

In a similar way, the amount of current that flows in

the driving electrodes in Eq. (2) is also modified by the

presence of the back gate, and it acquires the same multi-

plicative prefactor
(

1 − ṽ1,2/vB

)

as the driving voltage.

A detailed justification for these modifications and a cor-

rection of these equations valid in the sharp edge limit

can be found in Ref. [33]. Here, we just point out that

they are consistent with the local capacitance model of

Ref. [13]. In this model, the EMP velocity is inversely

proportional to a local capacitance (per unit length) func-

tion c(y) that quantifies the Coulomb coupling between

the EMPs and the electrodes, see Eqs. (3) and (4). In par-

ticular, for smooth QH edges [20,22], i.e., when d1,2,B ≪
l, one can roughly estimate the coupling to the driving

electrodes 1, 2 and to the back gate as c1,2,B = ǫSl/d1,2,B,

where ǫS is the dielectric constant of the medium, di is

the distance of the ith metal plate from the boundary of

the QH material and l is the width of the EMP in the

bulk direction. The renormalization of the velocities is

then straightforwardly understood by considering that the

total effective capacitance from the QH edge to ground is

composed of the two capacitances c1,2 and cB in parallel,

leading to ṽ1,2 = σxy/(c1,2 + cB). Equation (26) follows

immediately by considering that v1,2,B = σxy/c1,2,B. Also,

the presence of two capacitors in the driving regions imme-

diately explains the partition of voltages and currents: only

a factor c−1
B /(c−1

1,2 + c−1
B ) = 1 − ṽ1,2/vB of the total applied

voltage and of the total current is relevant for the response.

The (i, j ) matrix element of the port admittance in this

configuration can be easily derived from the same matrix

element of the port admittance obtained when the two

screening electrodes are grounded [i.e., the 2 × 2 upper

block of the terminal admittance (5)] by the following

substitutions:

τ1,2 → τ̃1,2 ≡
L1,2

ṽ1,2

, (28a)

σxy → σxy

(

1 −
ṽi

vB

) (

1 −
ṽj

vB

)

. (28b)

Note that these modifications are qualitatively different

from the parasitic capacitance C1G to ground described

in Sec. II C, which simply adds the term iωC1G to the

diagonal elements of the port admittance matrix.

To understand the effect of these substitutions, we focus

on a symmetric configuration and we specialize to ṽ1 =
ṽ2. In this case, the response is qualitatively similar to that

described in Sec. II A, but with different propagation times

τ̃1,2 and, most importantly, with an increased characteristic

impedance

1

2σxy

→
1

2σxy

(

1 −
ṽ1

vB

)−2

, (29)

due to the partition of current and voltage between the

driving electrodes and the back gate.

E. Additional modes and Coulomb drag

To conclude the analysis of a single QH droplet, we

comment here on how the performance of the device is

influenced by additional plasmonic modes and Coulomb

interactions between different edges; for simplicity we

analyze only a symmetric configuration.

A detailed analysis of the influence of slower plas-

monic modes in nonreciprocal QH devices can be found

in Ref. [26]. For TLs, the results are qualitatively sim-

ilar: the equation of motion (1) is replaced by a set of

Nmodes independent equations, where Nmodes is the num-

ber of modes. These equations of motion are characterized
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by different plasmon velocities vn(y) and couplings to

external electrodes σxy → σxyŴn; the coupling constant

0 ≤ Ŵn ≤ 1 is higher for faster modes and its precise

value depends strongly on the electrostatic model of the

edge. Also, because of interactions, the EMPs acquire a

more complicated charge-density structure, and this has

to be accounted for when computing the current from the

integral in Eq. (2).

These modifications can be modeled by an equivalent

circuit composed of Nmodes copies of the circuit in Fig. 2

connected in parallel. These copies describe the response

of different plasmonic modes and, consequently, they are

characterized by different propagation times and charac-

teristic impedances. The presence of additional parallel

circuits with different resonance frequencies leads to Fano-

like resonances in the S parameters of the device [26]. The

effect of slower EMP modes is negligible for low filling

factors that maximize the characteristic impedance, when

the edge of the QH droplet is abruptly defined.

The Coulomb interactions between EMPs localized at

opposite edges modify the equation of motion of the excess

charge density in a similar way. When a positive charge

wave is launched at one edge, because of the interedge

interactions, it drags with it a small amount of nega-

tive charge at the opposite edge [25,33]; because of this

Coulomb drag, the EMP propagation velocity is lowered.

The response of the system can be described by consid-

ering two EMP modes with charge densities with opposite

sign that propagate in opposite directions: these modes pro-

duce currents flowing in the same direction. A microscopic

analysis of this situation is presented in Ref. [33]; here we

limit ourselves to a discussion of the effect at the circuit

level.

In analogy to before, the equivalent circuit model of the

device is made up of two circuits like the one in Fig. 2 con-

nected in parallel. If we consider a symmetric setup, where

the two screening electrodes 3,4 have the same length and

the velocities ṽ3,4 (renormalized by the interedge interac-

tions) are equal, the propagation times in the two circuits

are also equal. The frequency-dependent part of the admit-

tance matrix can then be factorized and consequently we

are effectively left with a single circuit with character-

istic impedance 1/(2σxy). For this reason, at the circuit

level, the response of symmetric setups is not qualita-

tively altered by the Coulomb drag and its only effect is

to decrease the value of the EMP velocity.

III. LUMPED ELEMENT TRANSMISSION LINE

In this section, we discuss another possible implementa-

tion of a TL and, in particular, we study the microwave

response of a metamaterial composed of a chain of N

QH droplets. This structure has an exotic band structure

that affects the propagation of voltage waves in interesting

ways. By analyzing different configurations, we find that

(a)

(b)

FIG. 10. Metamaterial transmission lines. The metamaterials

are composed of a chain of identical QH droplets coupled in

different ways. The electrostatic coupling to the different metal

electrodes is quantified by the corresponding propagation time τi.

Here, we focus on symmetric droplets characterized by only two

propagation times τ0,1 and whose screening electrodes are con-

nected to ground. In (a) the coupling between adjacent droplets

is mediated by a metal electrode of negligible length, while in (b)

the droplets are coupled via unscreened Coulomb interactions. In

the latter case, the coupling region is characterized by its length a

and by the intra- and interedge velocities, vF and v1, respectively.

for certain designs the metamaterials can be employed to

manufacture arbitrary long transmission lines with a large

bandwidth, providing a technological advantage over their

distributed versions.

For simplicity, we restrict our analysis to droplets whose

screening electrodes are connected to ground, and we

assume that each droplet interacts only with the adja-

cent ones. Also, we neglect the possible parasitic coupling

between electrodes and ground. The way in which adjacent

droplets are coupled to each other strongly influences the

behavior of the whole system. Here, we focus on the two

configurations shown in Fig. 10.

We begin by considering the setup in Fig. 10(a), where

there are N identical QH droplets coupled via a thin metal

electrode. We restrict to a symmetric configuration, with

τ1 = τ2 and τ3 = τ4 ≡ τ0, see Fig. 2, so that each of

the droplets acts as the unconventional TL in Fig. 3. If

the metal lead connecting two adjacent droplets is short

enough, we can also neglect the phase accumulated by the

signal in passing from one droplet to the next one, and the

total transfer matrix of the chain T N is obtained simply by

taking the N th power of the transfer matrix T in Eq. (12),

which models a single droplet.

To characterize the response of the device, we com-

pute the scattering parameters using T N . In doing so, we

assume for simplicity that the impedance of the chain is

matched to the external microwave circuitry, i.e., Z0 =
1/(2σxy) and consequently the parameter α in Eq. (14a)

is α = 1. Note that to compensate for the typical high

mismatch between conventional microwave circuits (Z0 ≈
50 �) and the QH material, one can modify the first and
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last droplets to match the two impedances at the specific

frequency of operation, as described in Sec. II A.

The absolute values of the scattering parameters for dif-

ferent values of the ratio of propagation times p , defined

in Eq. (14b), are shown in Fig. 11. Similar to the situation

for a single droplet, the response can be decomposed into

fast oscillations modulated by a smooth envelope function.

However, as N increases, the S parameters begin to display

new interesting features. In particular, for certain frequen-

cies, the transmission is not allowed and the reflection is

maximal: these frequency gaps can be understood in terms

of band structure.

When N identical blocks characterized by a transfer

matrix T are cascaded, the total transfer matrix T N can

generally be written as

T
N = M

(

λN
+ 0

0 λN
−

)

M
−1, (30)

where M and λ± = T11 ±
√

T 2
11 − 1 are the matrix of col-

umn eigenvectors and the eigenvalues of T , respectively.

To find the band structure of the QH chain, we apply peri-

odic boundary conditions, leading to the condition on the

eigenvalues

λ± = ei2πn/N , (31)

with n being an integer number between 0 and N − 1.

For an infinite chain, we can introduce a real parame-

ter k ∈ [0, 1) that quantifies the phase accumulated by a

voltage wave in one unit cell, in analogy to the Bloch-

quasi-momentum in electronic band theory. In this context,

the matrix T is sometimes referred to as the Floquet

matrix. From Eqs. (12) and (31), it is straightforward to

find the dispersion relation ω(k),

cos(2πk) = T11 =
sin

[

(1 + p)
ωτ1

2

]

sin
(ωτ1

2

) . (32)

In Fig. 11, we plot the dispersion for several values of p .

There are, in general, ⌈p⌉ bands for each frequency period

ωτ1/(2π) ∈ [n, n + 1). Comparing the S parameters and

the band structure, one can immediately verify that the

transmission drops quickly to zero in the band gaps and at

these frequencies the device becomes perfectly reflecting.

More generally, it is well known from solid-state theory

that the transmission probabilities in open crystals, with a

number of unit cells N ≫ 1, can be understood in terms

of the band dispersion and the transmission of a single unit

cell (see, e.g., Ref. [44]). Analogously, in our case, the ratio

between the power transmitted to the end port and power

applied to the initial one, i.e.,
∣

∣SN
12

∣

∣

2
, can be written in the

FIG. 11. Absolute values of the S parameters and dispersion

relation for the metamaterial transmission line in Fig. 10(a). The

different plots are obtained with different values of p = 2τ0/τ1

and assuming a matched circuit α = 1. The blue (red) solid lines

in the top subplots are the reflection (transmission) parameters

|S11| (|S12|) obtained for a chain comprising N = 10 unit cells.

The thin dashed lines represent the response for a single droplet

and the thick dashed lines in darker colors are the smooth enve-

lope functions modulating the fast resonances. In the subplots at

the bottom, we show the band dispersion k(ω) [Eq. (32)] of the

corresponding periodic chain.
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revealing form:

∣

∣SN
12

∣

∣

2 =
(

1 +
|S11|2

|S12|2
sin(2πkN )2

sin(2πk)2

)−1

, (33)

where the crystal momentum k is here a continuous func-

tion of frequency defined from the band expression (32)

and Sij are the S parameters of a single QH droplet

[Eq. (13)]. Also, since we assume a lossless network, the

total reflected power is immediately obtained by
∣

∣SN
11

∣

∣

2 +
∣

∣SN
12

∣

∣

2 = 1.
∣

∣SN
11

∣

∣ and
∣

∣SN
12

∣

∣ are shown in Fig. 11.

From Eq. (33), it follows immediately that the res-

onances in the total transmission (and reflection) occur

when the single droplet is perfectly reflecting, i.e., |S11| =
0, and when the crystal momentum takes the fractional

values k = n/N ; this latter condition corresponds to the

eigenfrequencies of the periodic chain.

Additionally, the smooth envelope function modulating

the amplitude of the resonances can be obtained in the

allowed frequency range by setting sin(2πkN ) = 1. Note

that this envelope has a different behavior depending on

the parity of p at the central resonances ωn defined in Eq.

(10). This difference can be understood mathematically by

observing that, in the vicinity of ωn, the Bloch contribu-

tion reduces to |sin(2πk)| → |sin(πp/2)| and |S11| has the

form discussed in Sec. II A and shown in Fig. 4.

In particular, when p is an integer odd number, the

momentum contribution is maximal (and equal to one),

while |S11| increases quadratically from zero as a function

of ω. Therefore, close to the central resonance peaks, |S11|
and the envelope function of

∣

∣SN
11

∣

∣ have the same quadratic

frequency dependence. In contrast, when p is an integer

even number, both |S11| and the momentum contribution

vanish linearly as ω approaches ωn. For this reason, the

modulating function of
∣

∣SN
11

∣

∣ has a finite limit at ω → ωn,

leading to a finite value of the reflection coefficient of the

metamaterial TL. Physically, this reflection is related to the

finite backscattering that can occur at ωn because of the

crossing of bands with opposite curvature.

This band crossing is a physically interesting phe-

nomenon but, from a technological point of view, the

advantage of the metamaterial over the single droplet can

be appreciated by considering p = 1. This case is partic-

ularly convenient for achieving an high bandwidth, since

at ωn there is a sweet spot where the reflection increases

quadratically in ω, specifically as

∣

∣SN
11

∣

∣ ≈ |S11| ≈
3

8
(ω − ωn)

2 τ 2
1 . (34)

If we assume the EMP velocity to be constant along the

whole perimeter, to obtain p = 1 we need the driving

electrodes to be two times longer than the screening elec-

trodes. Then, a TL composed of a single droplet has a quite

inconvenient aspect ratio when p = 1, and to manufacture

longer devices we require a higher value of p; in this

case, however, the bandwidth varies only linearly in ω,

see Eq. (16). In contrast, in the metamaterial TL, the effec-

tive propagation length can be tuned arbitrarily by varying

the number of unit cells N , and so, using as unit cell a

QH droplet with p = 1, it is possible to implement a long

TL while preserving the quadratic frequency dependence

of the bandwidth.

For example, let us consider a metamaterial transmis-

sion line made of GaAs. In analogy to the distributed con-

struction discussed in Sec. II A, we assume a constant EMP

velocity vi = 5 × 105 m/s along the perimeter, and we set

L1 = L2 = 50 µm. Consequently, the device in Fig. 10(a)

mimics a TL at 5 GHz. To manufacture a TL 150 µm long

as in the distributed example, we can cascade N = 6 QH

droplets, each one having screening electrodes of length

L3 = L4 = 25 µm, such that p = 1. Using Eq. (34), the

reflection coefficient of the metamaterial remains below

|Smax
11 | = 0.1 (corresponding to a maximal insertion loss

of 0.044 dB) within a bandwidth 
ω/(2π) ≈ 1.64 GHz,

which is larger than that obtained in the analogous dis-

tributed setup by a factor of
√

2|Smax
11 |/3/|Smax

11 | ≈ 2.6.

For this configuration, we also examine the phase of

the transmission coefficient SN
12; the results are shown in

Fig. 12. Close to ωn, the phase arg(SN
12) varies linearly in

frequency, and it can be approximated as

arg(SN
12) ≈ N

π

2
− Nωτ1. (35)

This dependence can be understood by comparing this

result to Eq. (17): the phase arg(SN
12) accumulated in pass-

ing through a system of N cascaded QH droplets is sim-

ply N times the phase arg(S12) accumulated in a single

FIG. 12. Phase of the transmission coefficient S12 of the meta-

material in Fig. 10(a). The red lines are the phases of S12, the

black lines are obtained by using the linear approximation in

Eq. (35). In the plot, we use a different number N of unit cells;

in particular, N = 1, 5, 10 for dotted, dashed, and solid lines,

respectively. The thick vertical lines at ωτ1 = 2π/3 and ωτ1 =
4π/3 represent the edges of the transmission band.
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unit cell. The linear frequency dependence of arg(SN
12)

guarantees that the device is not dispersive.

We can also examine different coupling schemes

between adjacent droplets. In particular, we focus now on

droplets coupled via Coulomb interactions between edge

states, as shown in Fig. 10(b). The length a of the coupling

regions is assumed to be much longer than the distance

between adjacent droplets. In these regions, there is a

Coulomb drag between the EMPs localized at the edges

of the two droplets; this drag is determined by the inter-

play of intra- and interedge Coulomb interactions that are

parameterized by the velocities vF and v1, respectively.

In particular, as discussed in Sec. II E and in Ref. [33], a

finite v1 leads to the presence of counterpropagating modes

with opposite charge, moving with a renormalized velocity

v =
√

v2
F − v2

1 ≤ vF . The total transfer matrix T N
C relating

the input and output voltages and currents of this metama-

terial transmission line is derived in the Appendix and is

given by

T
N

C = BinA
N−2

Bout, (36)

where the matrices A, Bin, and Bout are defined in Eqs.

(A5), (A7), and (A8), respectively. This result can then be

used to compute the S parameters.

To better understand the scattering properties of this

device, it is instructive to analyze in more detail the effect

of the Coulomb drag. In particular, note that the interac-

tions between adjacent droplets can be modeled by the

transfer matrix

Tint =
(

1 ZI

0 1

) (

1 0

Z−1
G 1

) (

1 ZI

0 1

)

, (37)

with

ZI (ω) = −
i

2σxy

vF − v1

v
cot

(ωτI

2

)

, (38a)

ZG(ω) = −
i

2σxy

v1

v
cot

(ωτI

2

)

, (38b)

and τI = a/v. This transfer matrix corresponds to the

equivalent circuit model shown in Fig. 13.

The impedances ZI ,G(ω) are those of conventional TLs

terminated by an open circuit but, compared to that in

Eq. (7), they have a different characteristic impedance,

which depends on the intra- and interedge Coulomb inter-

actions. These impedances lead to qualitative differences

compared to the case examined before and, in particu-

lar, the impedance ZG(ω) provides a frequency-dependent

connection to ground at each unit cell. This connection

generally degrades the performance of the device; how-

ever, if the coupling between adjacent droplets is strong,

i.e., v1 → vF (and consequently v → 0), ZG(ω) acts as an

FIG. 13. Equivalent circuit model of the metamaterial shown in

Fig. 10(b). The Coulomb interactions between adjacent droplets

are modeled by the transfer matrix Tint in Eq. (37). This is

represented by a T junction composed of the delay lines ZI

and ZG, characterized by the propagation time τI ≡ a/v and by

the characteristic impedances (vF − v1)/(2σxyv) and v1/(2σxyv),

respectively. Here, v =
√

v2
F − v2

1 . This T junction is repeated

N − 1 times, where N is the number of QH droplets. Each junc-

tion is connected to the next one by an ideal transmission line

with characteristic impedance 1/(2σxy) and propagation time τ0.

The capacitive coupling to the external electrodes is assumed

to be the same for the initial and final droplets and is modeled

by the delay lines Z1 [Eq. (7)] with a propagation time τ1 and a

characteristic impedance 1/(2σxy).

open circuit and ZI (ω) as a short. Then, the metamaterial

behaves exactly as a single droplet described in Sec. II A

with a total propagation length Ltot = NLp (Lp = v0τ0 is

the length of the screening electrodes of a single droplet).

For finite values of v, new features of the scattering

parameters begin to develop and, in particular, at the fre-

quencies πn/τI and πm/τ0 one gets perfect reflection and

suppressed transmission, as shown in Fig. 14.

This behavior can again be understood in terms of the

band structure of the chain. Following the same procedure

discussed above, one finds the dispersion relation

v1 cos(2πk) = v sin(ωτ0) cot(ωτI ) + vF cos(ωτ0). (39)

Formally, this equation reduces to Eq. (32) when v1 =
vF = v, but since v =

√

v2
F − v2

1 , the results above cannot

be achieved for finite values of v1.

In the strong-coupling limit, the droplet chain has the

linear dispersion relation ω = 2π/τ0k (dotted dispersion in

Fig. 14), and since k is defined modulo 1, in the first Bril-

louin zone there are bands touching at frequencies πm/τ0.

For finite values of v, band gaps open at these frequen-

cies and at the frequencies πn/τI , where the cotangent in

Eq. (39) diverges. When the frequency is in the gaps, the

transmission drops quickly to zero. As v approaches vF ,

i.e., v1 → 0, the bands become flatter, eventually leading

to very narrow resonances.

Note that in this metamaterial, when τI = τ1, there are

band gaps at the central resonance frequencies ωn, where
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(a)

(b)

FIG. 14. Absolute values of the S parameters and disper-

sion relation for the metamaterial transmission line shown in

Fig. 10(b). The single droplets are assumed to be symmetric and

matched with the external microwave circuit, i.e., τI = τ1 and

α = 2σxyZ0 = 1. The chain is composed of N = 10 unit cells and

the Coulomb coupling between adjacent droplets is parameter-

ized by v/vF = 0.15. The two plots are given for different values

of p ≡ 2τ0/τ1; in particular, in (a) we used p = 1 and in (b)

p = 2. In the top subplots, the blue (red) lines are |S11| (|S12|).
In the bottom subplots, the band dispersions [Eq. (39)] obtained

with v/vF = 0.15 are plotted as solid lines; the dashed line is the

linear dispersion obtained in the strong-coupling limit v1 → vF .

in the previous configurations low reflection could be

achieved. For this reason, despite the quite interesting band

dispersion, a chain of Coulomb coupled droplets does not

make a good TL for large N .

IV. CONCLUSIONS AND OUTLOOK

In this paper, we discuss the possibility of manufac-

turing low-loss transmission lines by exploiting the states

localized at the edge of quantum Hall materials. The pecu-

liar physics of these states offers several advantages; in

particular, here we focus on their high voltage-to-current

ratio, which suggests that the value of the characteristic

impedance is of the order of the quantum of resistance.

A transmission line with an impedance of this order of

magnitude offers an alternative way of achieving strong

coupling between photon and spin qubits.

We analyze two possible implementations of these

devices: a single QH droplet capacitively coupled to

external electrodes and a metamaterial transmission line

with several, cascaded QH droplets. We compute the scat-

tering parameters of these devices to analyze different

possible ways of grounding the system and to examine the

effect of parasitic capacitances. To gain additional insights,

we find a simple equivalent circuit model mimicking their

response, and we observe that QH devices can also have

interesting self-impedance matching properties. We also

discuss a possible generalization of our model to account

for additional plasmonic modes and Coulomb drag.

To study the metamaterial transmission line, we find

its effective band structure and we relate it to the power

transmitted through the system.

A detailed analysis of dissipation in these devices and

a quantitative analysis of the coupling to semiconductor

qubits are issues that are not addressed here. More insights

into these aspects can be found in Ref. [33].
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APPENDIX: COULOMB DRAG

Here, we explain in more detail how to derive the cir-

cuit model described in Sec. III for the Coulomb coupled

droplet chain.

When the length of the coupling region is large com-

pared to the distance between the two droplets, the

equation of motion for the charge density in the ith droplet

reduces to

iωρi(y, ω) = ∂y [v(y)ρi(y, ω)

+vR(y)ρi+1(y, ω) + vL(y)ρi−1(y, ω)] .

(A1)

Here, we have introduced the functions vL,R with unit

velocity that quantify the coupling between adjacent

droplets.

If we use a piecewise approximation for the velocity

and assume a symmetric configuration, we can divide each

droplet into two propagation regions T, B of length Lp at

the top and bottom of the droplet, where the excitation

moves at a constant velocity v0 and there are two cou-

pling regions R, L of length a at the right and left of the

droplet, characterized by intra- and interedge velocities

vF and v1, respectively. Using the results from Ref. [33]

and rearranging the coordinate system to have the same

(clockwise) direction in each droplet and the same origin

(fixed conventionally at the boundary between region T

and L), it is quite simple to find that the general solutions

for the differential equations in the four regions of the ith
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droplet are

ρ
T,B
i (y, ω) = c

T,B
i ei(ω/v0)y , (A2a)

ρR
i (y, ω) = c+

i+1ei(ω/v)y − rc−
i+1e−i(ω/v)y , (A2b)

ρL
i (y, ω) = −rc+

i e−i(ω/v)(y−Lp−2a) + c−
i ei(ω/v)(y−Lp−2a),

(A2c)

with v =
√

v2
F − v2

1 ≤ vF and r =
√

vF − v/vF + v.

The coefficients are determined by the matching condi-

tions

v0ρ
T
i (2Lp + 2a) = vFρR

i (0) + v1ρ
L
i+1(Lp + 2a), (A3a)

v0ρ
B
i (a) = vFρR

i (a) + v1ρ
L
i+1(Lp + a), (A3b)

v0ρ
T
i+1(Lp + 2a) = v1ρ

R
i (0) + vFρL

i+1(Lp + 2a), (A3c)

v0ρ
B
i+1(Lp + a) = v1ρ

R
i (a) + vFρL

i+1(Lp + a), (A3d)

obtained by integrating the equation of motion (A1) in an

infinitesimally small region enclosing the boundary of dif-

ferent regions and considering the periodicity condition

ρT(0) = ρT(2Lp + 2a).

Moreover, one can define the average currents I
L,R
i from

Eq. (2) by integrating the charge density ρi over the regions

L, R. Since the resulting currents are linearly related to c±
i

and to c±
i+1, respectively, using Eqs. (A2) and (A3) one can

straightforwardly derive for the ith droplet the relation

(

I R
i−1

I L
i

)

= A

(

I R
i

I L
i+1

)

, (A4)

with

A11 =
2vF

v1

[

cos(ωτ0) +
v

vF

cot(ωτI ) sin(ωτ0)

]

− A22,

(A5a)

A12 = −A21 =
vF

v
sin(ωτ0) cot

(ωτI

2

)

+ cos(ωτ0),

(A5b)

A22 = −
v1

v
sin(ωτ0) cot

(ωτI

2

)

, (A5c)

and τ0 = Lp/v0, τI = a/v.

Note also that if we consider a sequence of N equal

droplets, where the first and last ones are coupled to the

external electrodes, we can easily obtain the total transfer

matrix T N
C in Eq. (36). The matrices Bin/out are defined by

(

Vin

Iin

)

= Bin

(

I R
1

I L
2

)

,

(

I R
N−1

I L
N

)

= Bout

(

Vout

Iout

)

, (A6)

and can be straightforwardly obtained by considering that

the voltage drives Vin and Vout are applied to the regions

L and R of the initial and final droplets, respectively,

and modifying accordingly the general solutions and the

matching conditions. This leads to

(Bin)11 =
ivF

2vσxy

{

cos (ωτ0)

[

v

vF

cot
(ωτ1

2

)

+ cot
(ωτI

2

)

]

+ sin (ωτ0)

[

cot
(ωτ1

2

)

cot
(ωτI

2

)

−
v

vF

]}

,

(A7a)

(Bin)12 =
iv1

2vσxy

cot
(ωτI

2

)

×
[

sin(ωτ0) cot
(ωτ1

2

)

+ cos(ωτ0)

]

, (A7b)

(Bin)21 = A21, (A7c)

(Bin)22 = A22, (A7d)

and to

Bout =
(

(Bin)12 (Bin)22

−A22 A12

)−1

, (A8)

with τ1 = Ld/vd and Ld and vd being the length of the

region coupled to the external electrodes (assumed to be

the same for the input and output port) and the correspond-

ing velocity.

It is now possible to check that the resulting total transfer

matrix T N
C can be decomposed as described in Sec. III.
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