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FeGe in the B20 phase is an experimentally well-studied prototypical chiral magnet exhibiting helical spirals,
skyrmion lattices, and individual skyrmions with a robust length of 70 nm. While the helical spiral ground
state can be verified by first-principles calculations based on density functional theory, this feature size could
not be reproduced even approximately. To develop a coherent picture of the discrepancy between experiment
and theory, we investigate in this work the magnetic properties of FeGe from first principles using different
electronic-structure methods. We study atomistic as well as micromagnetic parameters describing exchange
and Dzyaloshinskii-Moriya interactions, and discuss their subtle dependence on computational, structural, and
correlation parameters. In particular, we quantify how these magnetic properties are affected by changes of
the lattice parameter, different atomic arrangements, exchange and correlation effects, finite Fermi-function
broadening, and momentum-space sampling. In addition, we use the obtained atomistic parameters to determine
the corresponding Curie temperature, which agrees well with experiments. Our results indicate that the well-
known and well-accepted relation between the micromagnetic parameters and the period of the helical structure
is not valid for FeGe. This calls for new experiments exploring the relation by measuring independently the spin

stiffness, the spiralization, and the period of the helical spin spiral.

DOI: 10.1103/PhysRevB.100.214406

I. INTRODUCTION

Magnetic noncentrosymmetric cubic crystals of B20 type,
such as transition-metal germanides and silicides, are the
class of materials for which the direct observation of chiral
magnetic skyrmions has been reported first [1-4]. Over the
past decade, the study of these materials in bulk form [5—-18]
or grown as films [4,19-24] developed into an exciting re-
search subject since they provide a perfect test ground for re-
solving fundamental properties of skyrmions, rendering them
candidate materials for potential applications in skyrmion-
based computation. An important feature of these materials
is the competition between the antisymmetric Dzyaloshinskii-
Moriya [25,26] (DM) and the symmetric Heisenberg-type
exchange interactions, resulting in a variety of striking mag-
netic phases with respect to temperature, magnetic field, ma-
terial composition, and geometry. At zero external magnetic
field and below a critical temperature they are helimagnets.
Most importantly, they exhibit typically a small pocket in
the magnetic field versus temperature (H, T') phase diagram,
referred to as anomalous phase or the so-called A phase
[13,27,28], which has been identified with the skyrmion-
lattice phase [1-5,29]. In addition to skyrmion lattices and
single skyrmions, a more complex three-dimensional mag-
netic texture was observed for MnGe [11], and different types
of topological excitations such as chiral bobbers may coexist
with magnetic skyrmions in thin films of B20 compounds over
a wide range of material parameters [19,30,31].
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FeGe is the prototypical representative of the B20 com-
pounds in which the A phase [13] and the bobber [19]
were first observed. The Curie temperature is close to room
temperature and the helical period of about 70 nm is in a
regime comfortable to resolve by experimental techniques.
These are rather robust values confirmed by several experi-
ments [6,13,22,32-34]. It is widely accepted that the observed
chiral magnetic structures in this compound are stabilized
by DM interaction [35] rather than by nonrelativistic ex-
change as it is observed in several frustrated magnets. The
most important micromagnetic parameters characterizing the
magnetic order of B20 compounds are the spin stiffness A
and the spiralization D [36], which define the helical period
according to A = 47 |A/D|. However, while the spin stiffness
can be obtained from small-angle neutron scattering [37] or
magnetization behavior [38,39], which yields values between

A =90 and 190 meV Az in FeGe [6,22], to our knowledge
there are no direct independent experimental measurements
of the spiralization constant D in this compound.

In addition to these experimental studies, several the-
oretical efforts were undertaken to realistically model the
magnetic properties of FeGe. Specifically, this includes mi-
cromagnetic and atomistic spin models based on Heisenberg-
type exchange and DM interaction, where the underlying
parameters are derived from first-principles calculations using
density functional theory (DFT). However, in contrast to the
robustness of the experimentally measured period of the mag-
netic modulations in FeGe, the theoretical micromagnetic pa-
rameters obtained by different techniques vary substantially.
For instance, theoretical predictions for the spiralization in
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FeGe yield D = —4.5 meV A [40]and D = —6.5 meV A [34]
based on the dispersion of spin spirals, whereas a relativis-
tic multiple-scattering framework provides a value of D =
—9.0 meV A [41]. Moreover, representing the spiralization
by intrinsic spin currents leads to D = —7.0 meV A [42],
and theoretical studies focusing on the spin susceptibility
report the two distinct values D = —10.1 meV A [43] and
D= —1.0meV A [44]. This large variation of the spiral-
ization in FeGe is complemented by electronic-structure
works that provide the values A = 700 meV A2 [44] and
A = 855 meV A? [45] for the spin stiffness, using the energy
relation of noncollinear magnetic states or an approach based
on Green’s functions.

So far, the above-mentioned DFT methods were not able
to reproduce the experimentally observed period of the spin-
spiral modulations in many B20 compounds. Therefore, it is
important to identify possible factors which might be very
critical in computing the micromagnetic parameters by DFT.
In this work we focus on FeGe since spin fluctuations, which
are difficult to catch with DFT, are much less relevant for
this compound than for example in MnSi [46,47]. We ex-
plore by first-principles calculations based on different DFT
methods how sensitive the micromagnetic parameters are
to different factors, such as exchange-correlation potential,
Hubbard-U correction, broadening of the Fermi distribution,
atomic position, and lattice parameter. In addition, we gain
microscopic insights by evaluating the atomistic parameters of
Heisenberg and DM interactions, as well as the corresponding
Curie temperature. We discuss the orientations of the DM
interaction vectors with respect to the corresponding bonds
and their contribution to the micromagnetic DM interaction
following the symmetry of B20 materials.

The paper is organized as follows. In Sec. II we introduce
the theoretical spin model and provide the explicit relation
between the atomistic and micromagnetic parameters of the
exchange and DM interactions, focusing on the cubic B20
germanides. In Sec. III we briefly describe three different
computational approaches and two electronic-structure frame-
works which we employ in this work. The computational
details are summarized in Sec. IV. Section V presents our
comprehensive analysis of the atomistic and micromagnetic
interaction parameters in FeGe, where we discuss their depen-
dence on structural details, computational parameters, and the
choice of the electronic-structure method. We conclude our
work in Sec. VL.

II. MAGNETIC MODELS

The magnetic interactions in B20 materials are typically
modeled by a spin Hamiltonian

E:_%Z‘Iijsi'sj_%ZDij'[SiXSj]’ (1)
i#Jj i#j

where the microscopic parameters J;; and vectors D;; describe
the Heisenberg exchange and DM interactions, respectively,
between classical spins S; and S; (treated as vectors with
the length |S;| = 1) of the magnetic atoms at different lattice
sites i and j. Here, we neglect the tiny magnetocrystalline
anisotropy in the cubic B20 compounds [48]. The B20 crystal

belongs to the class of chiral crystal structures for which the
orientation of the microscopic vectors D;; can be arbitrary as
they are not restricted with respect to the Fe-Fe bonds by the
Moriya rules [26].

If the magnetic structure varies slowly across the crystal,
ie., |S; = S;|/ISi| < IR; — R;|/a, where a is the lattice pa-
rameter and |R; — R;| is the distance between atoms at sites
i and j (R; # R}), then a continuous magnetization vector
field m(r) [with |m(r)| = 1] can be used to simplify the
description of the magnetic properties. As a consequence, the
entire effect of the exchange and DM interactions on magnetic
structures can be summarized by introducing the spin-stiffness
tensor A and the spiralization tensor D [49,50] as micromag-
netic parameters entering the generalized functional of the
micromagnetic energy (defined per chemical unit cell)

1%
E[m] = é/ dr(VmAVm+D: L(m)), 2)

where
1
A= ZZJinij®Rija 3)
i#]
1
D=§§Dij®Rij 4)

are contractions of the microscopic interaction parameters
with the separation vector R;; = R; — R;. Here, D : L(m) =
> w DyuvL,y(m) denotes the contraction with the chirality
tensor £(m) = Vm x m, the components of which are the
Lifshitz invariants of m. For more details, see Ref. [50].
The micromagnetic parameters A and D, defined by Eqgs. (3)
and (4), are in units per chemical unit cell [51], the index i
runs over all sites within the unit cell, and j runs over the
whole lattice excluding pairs with i = j. In general, .4 and D
are 3 x 3 tensors. In practical calculations the sums in Egs. (3)
and (4) are truncated above a maximum interaction radius
Rmax~

The above tensors reduce to scalar matrices due to symme-
try arguments as the cubic B20 materials are characterized by
the point group 7'. To make this point clear, we first group all
symmetry-related pairs of atoms i and j into different shells
with specific distances R* = |R;;|. Then, summing up the
outer products in Egs. (3) and (4) over these symmetry-related
pairs results in the expressions

| i 4R* - R* 0 0
A=-S"r| o 4R* . R 0
44 0 0 4R’ -R®
N N
=LY FIRP=IT) A'=AIL 5)
and
| N [4R D 0 0
D=~ Z 0 4R’ - D’ 0
25 0 0 4R® - D’
N N
=27, Z(DS-RS) =I3ZDS = DT, (6)
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where R’, D?, and J* are representatives of the local bond
properties R;;, D;;, and J;;, respectively, within a given shell s.
N is the total number of considered shells and Z; is the
identity matrix. The quantities A® and D° denote the con-
tributions from shell s to the spin-stiffness and spiralization
constants, respectively, which we define per chemical unit
cell [51]. As follows from Eq. (6), each shell has the largest
contribution to the DM interaction if D;; || R};, and it is zero
it D ;L R} i

III. COMPUTATIONAL METHODOLOGY

In this work we employ three different computational
approaches, briefly described in the following subsections, to
extract the atomistic and micromagnetic interaction parame-
ters from the electronic structure as determined by density
functional theory. The approaches are distinct in the details,
e.g., from which self-consistent state the parameters are ex-
tracted, which magnetic states are treated perturbatively, and
at which stage of the calculation the spin-orbit coupling (SOC)
is included. These computational frameworks are realized in
two different electronic-structure methods that we present as
well.

A. Spin-spiral approach

We assume a conical spin spiral characterized by the prop-
agation vector ¢ and the rotation axis &,. In general, the spin
spiral of each magnetic atom type o = 1, ...,4 in the unit
cell of FeGe can have an individual initial phase ¢, and form
a cone angle 6,, with the rotation axis &,,. The orientation of
any classical spin S; = S, at position R; =R,, =R, + 1,
with n labeling the unit cell at R, and 7, denoting the four
magnetic sublattices within the unit cell, is described by

sin(6y) cos(q - R,q + @)
sin(6,)sin(q - Ruw + d0) | (7)
cos(6y)

Sna (q, érol) = R(érot)

Here, |S,,| = 1 and R (&) is a unitary matrix mapping &z to
the rotation axis €. via the relation R (€,) €3 = €.

Experimental data [13] and theoretical analysis [35] sug-
gest that the magnetic ground state of cubic FeGe is a flat
helical spin spiral. In this case, 6, = 90°, ¢, = 0°, and & ||
q, which simplifies Eq. (7) to

Sna(qv Rmx) = [ﬁl COS(q . Rna) + ﬁZ Sin(q . Rmx )]a (8)

where fi; and fi, are mutually orthogonal unit vectors with
€, = i} x fip. Considering spin spirals with slow rotation
(corresponding to small wave vectors q), i.e., if S,,(q, R,¢)
can be approximated by the continuous vector field m(q, r),
the total energy (2) has the form

E((L érot) = Eex(q) + EDM(q: érot)
~q" Aq — [&o - DI'q. )

Using the symmetry-dictated shapes of the tensors .4 and D,
Egs. (5) and (6), we can simplify the energy dispersion for the
helical spin spiral in B20 compounds:

Ex(q) ~ q" Aq = Aq" T:q = Ag’, (10)

EDM(qa érot) ~ _[érol : D]Tq
= —Dlé - Is1"'q = —Dg, (11)

where for helical spin spirals & - q = g. Therefore, the total
energy of the magnetic interactions in B20 materials has the
form

E(q) ~ Aq> — Dq. (12)

The wave number ¢n,;, = D/2A that minimizes E(q) defines
the wavelength

2 A
= =4 ’— (13)
|qmin| D
of the spin spiral and its rotational sense as encoded in the sign
of D.
According to Eq. (12), the parameters A and D are related
to derivatives of the total energy with respect to the wave

number q in the long-wavelength limit:

2
A 14LE@ _dE(q)

T2 dg? dq

and D=

(14)

q—0 q—0

B. Infinitesimal rotation approach

An alternative route toward the parameters A and D is
to determine first their microscopic origins via multiple-
scattering theory as implemented in the Korringa-Kohn-
Rostoker (KKR) Green’s function method [52-54]. In this
framework, the microscopic parameters of Heisenberg and
DM interaction are obtained from the collinear state by
applying infinitesimal rotations of the magnetic moments,
which provides access to the atomistic parameters J;; and
D;; [55,56]. Based on this information, the micromagnetic
analogs are found from Egs. (3) and (4). Since this formalism
requires an integration over all occupied electronic states,
varying the position of the Fermi level provides insights
into the response of the magnetic interactions to doping and
alloying [57].

C. Berry phase approach

The recently developed Berry phase theory of DM in-
teraction [36] constitutes a further conceptual and compu-
tational framework that allows us to evaluate directly the
spiralization tensor D as linear response of the spin-orbit-
dependent free-energy density with respect to small chiral
perturbations, based on the ferromagnetic state. Bypassing
noncollinear calculations, this approach facilitates the self-
consistent treatment of the full spin-orbit interaction, in con-
trast to the outlined method based on spin spirals. The formal-
ism correlates the DM interaction with the global properties
of a mixed parameter space of the crystal momentum k and
the magnetization direction 1 according to the Berry phase

occ

expression [36]
1 aukn 814]("
D= ¢ I i . (15
NVHC;e“®m§[mx<am 8kv>] (1)

Here, |u,) denotes an eigenstate of the lattice-periodic
Hamiltonian Hy = e ®THe®T with the band energy &y,
i, = Hx + & — 2E8 where &g is the Fermi level, N is the

hkn
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number of Kk points, and the sum is restricted to all occupied
states. By varying the number of occupied states, we can again
access the response of the spiralization tensor due to doping
or alloying.

D. Electronic-structure methods

The different approaches to extract first-principles interac-
tion parameters from density functional theory are realized
most efficiently in two different electronic-structure methods.
The first one is the full-potential linearized augmented-plane-
wave (FLAPW) method as implemented in the FLEUR code
[58]. The total energy of the spin spiral is calculated directly
by applying the generalized Bloch theorem. We utilize this
code to self-consistently compute the total energy in the
absence of SOC for different values of the q vector. Thus, the
variation of the electron density with the latter wave vector is
included in the initial states from which we determine subse-
quently the energy of the DM interaction by treating SOC as
a small perturbation [59]. Curvature and slope of the resulting
two energy dispersions provide access to the micromagnetic
parameters A and D, respectively [see Eq. (14)].

The atomistic parameters of the magnetic interactions were
computed using the full-potential relativistic Korringa-Kohn-
Rostoker (KKR) Green’s function method [52-54] in which
the all-electron charge density is obtained from the Green’s
function that is the solution of a Dyson equation. In contrast
to the FLAPW method, the KKR method allows to compute
the atomistic parameters J;; and D;; with SOC included self-
consistently, however, deviations of the electronic structure
from the ferromagnetic state are not included.

In addition, to evaluate the spiralization tensor D according
to its Berry phase theory, we compute the electronic structure
of ferromagnetic states with various orientations m using the
FLEUR code [58]. Based on this information, we generate
systematically a single set of so-called higher-dimensional
Wannier functions [60]. This computational scheme facili-
tates an efficient but accurate advanced Wannier interpolation
[60-62] of the complex parameter space that underlies the
calculation of Eq. (15).

IV. COMPUTATIONAL DETAILS

Our calculations employ two different approximations to
the a priori unknown exchange-correlation functional of DFT.
While the generalized gradient approximation (GGA) [63]
provides structural data in very good agreement with the
experiment, which we thus use in all calculations, we also
consider the local density approximation (LDA) [64] to reveal
the role of exchange and correlation effects for the magnetic
properties of FeGe. Specifically, this concerns the evaluation
of the microscopic interaction parameters within the KKR
method. Analogously, by using the LDA+U methodology, we
assess how correlations in the Fe-3d and Ge-4p orbitals affect
the underlying magnetic properties. Using the structural GGA
data, we use the values 1.5, 2.5, and 3.5 eV (1.5 eV) for the
Coloumb U for Ge-4p (Fe-3d) orbitals as well as J = 0.5 eV.

The FLAPW calculations are converged with a plane-wave
cutoff of 4.2 a.u.”' and 24 x 24 x 24 k points in the full
Brillouin zone (BZ). The muffin-tin radii were chosen as

TABLE I. Lattice parameter a (in /c\), atomic positions up. and
Uge, Fe-Ge and Fe-Fe distances (in A), and magnetic moment Sg, of
the Fe atoms (in ug) [67]. Experimental values as well as our DFT
results obtained within GGA and LDA are provided.

a UFe UGe RFe—Fe RFe—Ge SFe
Expt. 4.69*°  0.135* 0.842* 2.881° 2391° ~1.0°
GGA 4.670 0.134 0.842 2.862 2.366 1.16
LDA  4.558 0.136 0.841 2.795 2.321 1.11

aReference [13].
bReference [32].
‘Reference [34].

2.2 a.u. for both Fe and Ge. Using GGA, we perform the
structural optimizations within the FLEUR code and use the
resulting parameters among all computational approaches.
To accurately evaluate A and D from the dispersion of spin
spirals, the q sampling of the energy curve has to match
with the grid of points in the electron crystal-momentum
BZ. Since the ground state of FeGe is a long-range helical
spin spiral with ge, = 0.009 Ail, the explicit energy calcu-
lation requires Vaz/q3,, ~ 150° k points in the full BZ of
volume Vg7, resulting in an increased computational burden.
Therefore, we compute the micromagnetic parameters from
the corresponding dispersion curves obtained for larger g
values, and test the convergence. All KKR calculations are
performed using 48 x 48 x 48 k points in the full BZ. The
energies of the spin spiral and the micromagnetic parameters
are computed using Eqgs. (1), (3), and (4), respectively, for
which the summation is truncated above a maximal interaction
radius of Rpy.x = Sa, where a is the lattice parameter. We
applied the infinitesimal rotation approach in LDA.

Aiming at the spiralization tensor within the Berry phase
theory, we calculate self-consistently the FLAPW electronic
structure of the ferromagnetic state with m along the z di-
rection and all other parameters as stated before. Based on
the converged charge density, we invoke the magnetic force
theorem [65] to compute wave functions and band energies
onacoarse 8 x 8 x 8 k mesh for eight different magnetization
directions. This information is used to generate systematically
a single set of 114 higher-dimensional Wannier functions [60]
out of 202 Bloch states, with the frozen window extending
to 5 eV above the Fermi level. In a final step, we employ an
advanced Wannier interpolation [60-62] to evaluate the Berry
phase expression (15) by integrating over a dense mesh of
128 x 128 x 128 k points.

V. RESULTS AND DISCUSSION
A. Crystal structure and magnetic properties

The B20 structural type with the space group P2;3 of
cubic FeGe does not contain symmetry operations of second
kind and therefore corresponds to a chiral crystal structure.
There are two sets of coordinates characteristic for two enan-
tiomeric structures, one of which is shown in Fig. 1, that
could be transformed one into another by inversion. In this
work, we focus on the structure with right-handed crystalline
chirality [66], which is defined by the 4a Wyckoff positions
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FIG. 1. Visualization of the B20 structure. Shown is one of the
enantiomers which can be transformed into the other by a mirror op-
eration as illustrated. The dark red (blue) spheres indicate the lattice
positions of the magnetic (nonmagnetic) ions located at the 4a Wyck-
off positions (u,u,u), (0.5 —u,1 —u,05+u), (1 —u,05+u,
0.5 —u), and (0.5+ u,0.5 —u, 1 — u). The corresponding quanti-
ties up. and uge for FeGe are given in Table I. To illustrate the
structural chirality, the first-nearest nonmagnetic neighbors of each
of the four magnetic ions, positioned in the adjacent unit cells, are
shown (light blue spheres) additionally. They are located along the
local threefold rotation axes (green arrows).

(u, u,u), (0.5—u,1 —u,054+u), (1 —u,05+u,0.5—u),
and (0.5 4 u,0.5 —u, 1 — u) for the magnetic and nonmag-
netic atoms. The structural parameters obtained by DFT are
in agreement with the experimental results in the temper-
ature regime below 80 K (see Table I). The experimental
saturation magnetic moment extrapolated to 0 K at each Fe
site is ~1.0 up [32,48]. A more recent experiment shows a
magnetization of (360 £ 10) kA /m at 5 K, which corresponds
to a moment of (0.982 £ 0.007) up [34] per Fe atom. The
calculated values obtained in DFT are slightly larger, 1.16 ug
with GGA or 1.11 up with LDA [67].

The experimentally determined magnetic order of bulk
FeGe in zero magnetic field is a long-period helical spin
spiral with a period of about 70 nm, propagating along the
crystallographic [111] and [100] directions at temperatures
below 211 K and above 245 K, respectively [13,68-70]. The
period of the helimagnetic order is very robust and remains
unchanged also in thin films, although the propagation direc-
tion does not depend anymore on temperature and magnetic
field direction but it is normal to the film plane due to
the change of the magnetic anisotropy [24,34]. Most of the
theoretical studies on B20 compounds use a model of classical
Heisenberg ferromagnetism with DM interaction [35], which
we discuss in detail and compute using different models and
DFT techniques, concentrating on different computational and
structural factors that might have strong impact.

B. Micromagnetic interaction parameters

Figure 2 displays the energy differences of the magnetic
interactions (exchange and DM interaction) of a helical spin
spiral with the wave vector q and the ferromagnetic state. Both
dispersion curves were computed per unit cell either using
the FLEUR code (open markers) or from the microscopic KKR

40k 0.01_— .
- 0 ______ u—_
- (]
O 00 X a0
20+ 0 0.005  0.01
Exchange

I e KKR (LDA)
Othggoees ™ _ _ _ _____ —{— FLEUR (LDA)
. —{1~ FLEUR (GGA)

Energy (meV)

<

0.2 0.3
q (A
FIG. 2. Energies per unit cell of the exchange and DM interac-
tion, computed for flat spin spirals as function of ¢ = |q| (with q
pointing along the [111] direction). Please note the energy of DM
interaction is multiplied by 20 for visualization purposes. The inset
shows the total energy around the minimum. Open markers show
the energies computed by the FLEUR code (with LDA and GGA)
and solid lines are fits to the corresponding energies Ag?, Dq, and
Ag® + Dgq, respectively. Filled circles are the energies obtained in
accordance to Egs. (10) and (11), where the pairwise parameters
Jij and D;; were computed using the KKR method (with LDA).
The vertical green line represents the experimental pitch (gexp &
0.009 A7),

parameters J;; and D;; (filled markers) entering Eq. (1), as it is
discussed in Sec. III D. The full lines represent the analytical
expressions for E.,(q) = Ag* and Epy(q) = Dg, where the
parameters A and D are obtained through fits to the calculated
energy points. The sum of both energies E.x + Epym is shown

in the inset in the vicinity of the energy minimum for wave

number 0 < g < 0.01 AT

From Fig. 2 it is clear that the energies of exchange and
DM interactions agree rather well among spin-spiral and
infinitesimal rotation approaches for small-g values and if the
same exchange-correlation potential is used. Both LDA and
GGA predict complex magnetic ground states characterized

by similar wave vectors, i.e., g-P* = 0.0042 A" and qSSA =

0.0047 A~". The energy difference of about 0.01 meV be-
tween the helical ground state and the FM state as obtained
within LDA or GGA is tiny, corresponding to a saturation
magnetic field of B = 0.06 T [71], which is twice as small
as the experimental value obtained for FeGe [72].

The micromagnetic parameters obtained by the different
computational approaches followed in this work, including
spin-spiral dispersion, Lichtenstein formalism, and Berry
phase theory, are summarized in Table II. The agreement
between different electronic-structure methods improves if the
same exchange-correlation functional is used. In particular,
the GGA results for the magnetic moment, the spin stiffness,

and spiralization amount to S = 1.16 ug, A = 654 meV Az,
and D = —5.9 meV A, respectively, which is overall slightly
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TABLE II. Magnetic moment S of the Fe atoms [67], the spin stiffness A [S1], the spiralization D, the period A of the spin-spiral
modulations, and 7¢ for the B20 magnet FeGe, as obtained by experiment or by DFT calculations. The theoretical micromagnetic parameters
are evaluated within different computational approaches. In addition to the values obtained in this work from spin spirals, Green’s functions,
and Berry phase theory, we list results from formalisms based on spin currents and spin susceptibility (Ref. [44]). For the spin-spiral approach,
exchange and correlation effects are also treated within the ad hoc scaling GGA+a (with @ = 0.834) or within LDA+U, where a Hubbard-U
of 1.5 eV is used either only on the Ge p orbitals or only on the Fe d orbitals, and J = 0.5 eV. All calculations were performed based on the
computationally optimized structure obtained within GGA. MF signifies mean field, and MC Monte Carlo.

Method Approx. S (ug) A (meV A?) D (meV A) A (A) Te (K)

LDA 1.11 563 —4.5, -4 1557

GGA 1.16 654, 650° —5.9, —5.5*, 6.5 1390, 1485"
Spin spirals LDA+Uge/Ur. 1.16/1.56 657/649 —57/—428 1447/1716

GGA+a 1.0 961 —6.2 1955

Inf. rotation LDA 1.11, 1.12¢ 529, 855¢ —4.5,—9¢ 1477 310 + 10 (MC), 232¢ (MF)
Berry phase GGA/LDA —6.5/—-53
Spin curr./susc. GGA -7t /=1t
Experiments 0.9840.01° 89 + 8¢, 194" —1.6¢ 697¢, 7001 280 + 204kl

aReference [40]; "Ref. [42]; “Ref. [34]; ‘Ref. [41]; °Ref. [45]; 'Ref. [44]; #Ref. [22]; PRef. [6]; ‘Ref. [13]; iRef. [33]; *Ref. [75]; 'Ref. [5].

larger than the values obtained within LDA leading to

S=1.11ug,A =563 meVAz, and D = —4.5 meVA, respec-
tively. The corresponding period A of the helical spiral
amounts to 1560 and 1390 A, respectively, which is con-
sistently reproduced if we evaluate directly Eq. (13). While
the obtained X\ is similar to available theoretical data [42],
the value deviates by a factor of 2 from the experimentally
measured pitch of 700 A that corresponds to the wave vector
g =0.009 A",

This prominent discrepancy between experimental and the-
oretical wave vectors of the predicted magnetic ground state
is unsatisfying. Therefore, we aim at analyzing the nature of
this difference and trace it back to potential error sources, one
of which could be the treatment of exchange and correlation
effects in FeGe. To address this point, we follow an ad hoc
approach by scaling the vector part By, of the GGA exchange-
correlation potential by a factor «. For o = 0.834, this pro-
cedure reduces the magnetic moment to the experimentally
determined value of about 1.0 ug [see Fig. 3(d)]. However,

such a scaling enhances the spin stiffness (A = 961 meV Az)
and the spiralization (D = —6.2 meV A), which manifests in
an overall increase of the pitch to A = 1955 A that deviates
even more from the experimental value.

To establish a clear picture of the role of correlations in
FeGe, we apply a phenomenological Hubbard-U correction
either on the Fe-d or on the Ge-p states, on top of the
GGA electronic structure [73,74]. While introducing U on the
magnetic atoms has been reported to improve the agreement
between theory and experiment on the magnetic moment in
the B20 compound MnSi [47], we demonstrate the opposite
trend in FeGe. Using U = 1.5 eV on the Fe-d orbitals, the
spin magnetic moment is strongly enhanced to S = 1.56 ug
as shown in Table II, which is far from the measured value.
In addition, due to such a correction the period of the spin
spiral becomes longer by 23%, reaching a value of 1716 A. On
the other hand, using a Hubbard-U to treat the correlations on
Ge-p orbitals might influence the hybridization of those states
with Fe-d orbitals and therefore could modify the strength
of the magnetic interactions as well. As shown in Fig. 3,

indeed, such an effect slightly reduces the moment, decreases
spiralization, but enhances the spin stiffness such that the
spin-spiral period becomes longer.

From the above results we can conclude that exchange-
correlation effects alone are not able to describe the discrep-
ancy between the theoretically predicted and the experimen-
tally measured length of the spin spiral in FeGe. In addition,
as shown in Table II, there is a substantial variance in the mi-
cromagnetic parameters computed previously within different
frameworks including infinitesimal rotation, spin current, and
spin susceptibility. Such discrepancy might be traced back to
subtle computational details, the role of which we investigate
in the following.

a o
1.0 095 09 0.85 0.8 1.0 095 09 085 0.8
T T T T T T T T T T

; ; 52 ;
(b)

1000f @

D (meVA)

S (pg)

U (eV)

U (eV)

FIG. 3. (a) Spin stiffness A, (b) spiralization D, (c) period A of the
spin spirals, and (d) magnetic moment of the Fe atoms as a function
of the the Hubbard-U parameter applied only to the p orbitals of Ge
in combination with / = 0.5 eV (open markers), and as a function
of the scaling factor « for the vector part of the exchange-correlation
potential (filled markers).
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FIG. 4. Micromagnetic parameters of (a) the exchange A, (b) the
DM interaction D, and (c) the corresponding period A = 2w A/D of
the resulting spin spiral, as a function of the fitting interval [0, gpmax]-
The micromagnetic parameters A and D were obtained as fit to the
exchange and DM interaction energies of spin spirals shown in Fig. 2.
(d) Magnetic moments of Fe atoms computed with the FLEUR code
for spin spirals with q || [111] and with the KKR method for the FM
state (q = 0, red line).

C. Accuracy of the methods

In this section, we study the accuracy of our first-principles
calculations of the micromagnetic parameters, focusing on the
influence of fitting details and computational parameters such
as sampling of the Brillouin zone (BZ) and broadening of
the Fermi distribution. First of all, since the micromagnetic
parameters A and D within the spin-spiral approach are ob-
tained by fitting the model expressions, Eqgs. (10) and (11),
to the computed spin-spiral dispersions, we test the fit quality
with respect to the size of the fitting interval [0, gmax]. From
Figs. 4(a)-4(c) it becomes clear that the absolute values of
both A and D become larger if the fitting is performed for g
values closer to the I' point. Overall, the spin-spiral period
hardly reduces below 1460 A within LDA and 1370 A within
GGA at g = 0. Figure 4(d) shows the magnetic moments
of the different Fe atoms as obtained from self-consistent
calculations without SOC, either of spin-spiral states in the
FLEUR code or of the ferromagnetic state in the KKR method.
Note, different dependence of Fe magnetic moments on wave
number ¢, as it is obtained within the FLEUR code, is a
result of broken symmetry by such magnetic structure. Minor
differences of the magnetic moments at ¢ = 0 might be due
to different integration range of the magnetization density
within two methods. This might be the reason as well why
the micromagnetic parameters A and D obtained within the
two computational schemes are slightly different.

Next, we assess how the sampling of the BZ as well as the
broadening of the Fermi distribution affect the convergence
of the micromagnetic parameters. According to Fig. 5(a), the
parameters A, D, and A are essentially converged to a robust
value if we use more than 24 x 24 x 24 k points. However,
below this critical density for sampling momentum space, we
recognize drastic changes in the micromagnetic parameters.

() (b)

& 600 670
°§ L
© 400 660
g L
N
< 200 . L 650
< 4-5.4
s 456
g ] 5.8
Q 1-6
| | | I ] 62
1400 1600
1200\
< Tt 1500
=1000F
800k 1400
600 L L1 1300
123 243 363 423 0 100 200 300
k-mesh Temperature (K)

FIG. 5. The spin stiffness A, the DM interaction D, and the spin-
spiral period A as a function of (a) the number of k points in the full
BZ and (b) the temperature of the Fermi smearing. Please note the
different scales of the left and right axes.

For instance, if we use 12 x 12 x 12 Kk points in the full BZ,
spin stiffness and spiralization are four and two times smaller,
respectively, resulting in a two times shorter period of the
magnetic modulations A.

For metallic systems the redistribution of the electronic
states around the Fermi energy can play a key role for the
magnetic properties [40,44]. Therefore, it is important to
investigate the effect of the Fermi broadening as mediated by
the temperature 7 on micromagnetic parameters. As shown
in Fig. 5(b), lowering the temperature below 100 K does not
change the micromagnetic parameters significantly. Thus, it
becomes obvious that the computed wavelength of the helical
state is closest to experiment if the Fermi broadening is small.
A larger value of the Fermi broadening results in larger spin
stiffness and smaller spiralization, manifesting therefore in a
larger period of the spin spiral.

D. Magnetostructural dependence

In this section, we study the dependence of the spin
magnetic moment, the magnetic interaction parameters, and
ultimately the wavelength of the helical state on the structural
details such as lattice parameter a and atomic positions (uge
and up), considering two scenarios. In the first case, the
atomic positions were optimized for various lattice parameters
while in the second case, uge and ug. were tuned for the fixed
lattice parameter of @ = 4.67 A. The interaction parameters A
and D that we present here were obtained from spin-spiral
calculations based on the GGA ground state, the structural
properties of which are in very good agreement with exper-
iment. For example, as summarized in Table I, the optimized
lattice parameter of a = 4.67 A is only 0.6% smaller than the
experimental value, and also the relaxed atomic positions of
Fe and Ge atoms hardly deviate from the measured values.
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FIG. 6. Spin stiftness, DM interaction, magnetic moment of Fe
atoms, and period of the spin spirals as function of (a) the lattice
parameter a and (b) the distance between the first-nearest Fe and
Ge atoms Rpe.ge(itre, Uge) = ~/3(1 + upe — uge). Filled markers in
(a) stand for the structures with relaxed atomic positions for different
lattice parameters while the open marker corresponds to a simulation
with the experimentally obtained values. In (b) the distance between
neighboring Fe and Ge atoms is shown either as function of the Ge
atomic position uge for up. = 0.134, or as a function of the Fe atomic
position ug. for ug. = 0.842. The solid (dashed) vertical line stands
for the relaxed (experimental) lattice parameter and atomic positions
(see Table I).

The micromagnetic parameters of FeGe as a function of
the lattice parameter are illustrated in Fig. 6(a). First of all, we
note that upon increasing the lattice parameter, the distances
between the first-nearest Fe-Ge and Fe-Fe neighbors grow
linearly, manifesting in a larger magnetic moment of the Fe
atoms. In addition, while increasing a leads to a stronger DM
interaction, the spin stiffness is reduced, as a consequence of
which the period X decreases.

Keeping the lattice parameter fixed to the equilibrium value
a = 4.67 A, next, we study how structural changes in terms of
modified Fe and Ge positions affect the interaction parameters
A and D. During this analysis, we make use of the distance
between neighboring Fe and Ge atoms, which amounts to
Rpege = \/§ao(1 + upe — uge) [76]. Remarkably, our results
shown in Fig. 6(b) demonstrate that the micromagnetic quan-
tities A and D depend differently on ug. and ug. although
Rpege is the same. The spin stiffness A is less sensitive
to the positions of Ge and Fe atoms, whereas D changes
prominently with the Fe positions. For example, reducing
the Fe-Ge distance by 1% by moving the Fe (Ge) atoms

FIG. 7. (a) Exchange interaction parameters J;; and (b) absolute
values of DM interaction vectors |D;;| between Fe atoms as functions
of the interatomic distance (between Fe atoms) |R;;| (in units of
the lattice parameter a). (c) Micromagnetic spin stiffness A and
(d) spiralization D (obtained via summation over all contributions
up to |R;;]), (e) Curie temperature, Tc, and (f) period of the spin
spirals A as functions of R, (in units of the lattice parameter a),
up to which contributions from the atomistic parameters (J;; and
D;; corresponding to all |R;j| < Rpay) are included. Note that the
parameters J;; and |D;;| in (a) and (b) are multiplied by 2 =S| [S;l.
The Curie temperature Tc, shown in (e), is computed from J;;
parameters using Monte Carlo simulations (MC) and the random
phase approximation (RPA). The inset in (b) presents cos(f;;) for
the first five shells, where 6;; is the angle between R;; and D;;.

changes the spin stiffness only by +1% (—0.5%), while the
DM interaction is enhanced by 6.5% (2.8%). For the spin
stiffness, this behavior directly correlates with the trends for
the spin magnetic moment shown in Fig. 6(b). Moreover, the
increasing magnitude of the DM interaction can be attributed
to the change in the hybridization between the orbitals of
two atoms (Fe and Ge), as well as to an enhancement of the
gradient of the electrostatic potential as Fe and Ge approach
each other. Owing to these characteristics of the interaction
parameters, the period A of the magnetic modulations reduces
with decreasing distance Rpe Ge-

E. Atomistic interaction parameters

In the following, we elucidate the microscopic nature of
the magnetic interactions in FeGe by discussing the atomistic
exchange parameters obtained within the KKR formalism.
Specifically, we analyze their contributions to the micromag-
netic quantities describing Heisenberg and DM interactions.
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Figure 7(a) depicts the exchange constants J;; as a func-
tion of the distance |R;;| between two interacting magnetic
moments. We included interaction pairs that are separated up
to five lattice parameters, i.e., Ryax = Sa. We observe that the
Jij’s decay rapidly with distance, and take the largest positive
values for the first-nearest Fe-Fe neighbors. The interactions
between second- and third-nearest neighbors exhibit J;;’s of
opposite, smaller value. Using this microscopic information,
we evaluate the micromagnetic spin stiffness A based on
Eq. (5), the result of which is presented in Fig. 7(c) for an
increasing number of considered interacting Fe pairs. As the
individual contributions to A follow the form Jinizj, distant
interaction partners constitute an important part of the mi-
cromagnetic spin stiffness. The decay of the J;; for larger
distances competes with the quadratic increase of the sepa-
ration |R;;| between the moments, resulting in a diminishing
oscillatory behavior of A with respect to Ryax.

To validate the computed J;; parameters, we use them to
calculate the Curie temperature 7¢. It is well known that
the mean-field theory overestimates the Curie temperature
(see, for instance, Refs. [77,78]). Therefore, we evaluate T¢
of the classical Heisenberg model considered in this work
using either the random phase approximation (RPA) within
a multisublattice approach [79,80] or Monte Carlo simula-
tions [81], which are both rather accurate but numerically
more expensive methods. In the Monte Carlo simulations
we determine the Curie temperature from the peak of the
temperature-dependent static susceptibility. In both methods
we evaluate the Curie temperature of the ferromagnetic state
from different sets of calculations with an increasing number
of pairs of magnetic moments that mutually interact.

The results summarized in Fig. 7(e) indicate that conver-
gence of T¢ is achieved once we include interacting atoms
that are further than 2.5 times the lattice parameter apart from
each other. Within RPA the computed T¢ for FeGe amounts
to 187 K, which is 33% lower than the experimental value
of (280 % 2) K [34]. In addition, we verified that accounting
for the effect of DM interaction within RPA hardly affects this
value of T¢. Using Monte Carlo simulations, we obtain a more
accurate value for the Curie temperature T of (310 £ 10) K,
which is only 12% higher than the experimental value. Con-
sidering the electronic and magnetic complexity of the B20
FeGe, this is a very reasonable agreement, from which we
conclude that the magnitude of the Heisenberg exchange
constant and ultimately the spin stiffness are about 12% too
high.

Now, we turn to the detailed microscopic analysis of the
tendency toward chiral magnetism in FeGe as mediated by
the DM interaction. Figure 7(b) displays the absolute value
of the atomistic DM vectors D;; as function of the interaction
radius R;; between two Fe atoms. Most prominently, we note
that the magnitude of D;; decays rapidly with distance, just
like in the case of the J;;, with the largest contribution orig-
inating from nearest-neighbor interactions. Considering the
factors R;; - D;; as integral contributions to the micromagnetic
spiralization according to Eq. (6), we arrive at the slowly
converging behavior of D shown in Fig. 7(d). To understand
this property, we introduce the angle 6 between the orientation
of D;; and the associated bond connecting the interacting mo-
ments. Consequently, although the nearest neighbors provide

large microscopic contributions to D;;, the associated angle 6
amounts to nearly 90° [see inset of Fig. 7(b)], rendering the
overall effect on the micromagnetic spiralization negligible.
As the direction between bond vectors and microscopic DM
vectors changes rapidly with distance, we find an oscillatory
but slowly converging behavior of the micromagnetic DM
parameter. The oscillatory behavior of A and D with respect
to Rmax has a strong effect on the period of the spin spiral A
[see Fig. 7(f)].

F. Fermi-level dependence of the micromagnetic parameters

Any real sample is subject to imperfections including
impurities, antisite defects, and off stoichiometry, all of which
can affect the filling of the electronic bands as well as the
Fermi-surface topology. Likewise, correlation effects beyond
those treated within LDA or GGA can modify the Fermi
surface. As the magnetic properties reflect immediately the
spin and orbital nature of electrons near the Fermi level,
variations of the latter can play a crucial role in correlating
experiment and theory. Therefore, in this section we study
how susceptible the magnetic properties of FeGe are with
respect to variations of the band filling. Since the position
of the Fermi level in the B20 magnet FeGe affects mainly
band filling of the 3d electrons, it can be associated with the
replacement of Fe by Mn or Co atoms. Therefore, in addition
to a simple shift of the Fermi level, we consider alloyed
systems within the virtual crystal approximation (VCA) for
a better comparison to experiment. Within the method of
infinitesimal rotations [55,56], this merely amounts to shifting
the upper integration limit of the convoluted Green’s functions
to values higher or lower than the Fermi level, obtaining
band-filling-dependent interactions [82,83].

Figure 8 summarizes our results of the magnetic properties
computed for different positions of the Fermi level (open
markers) and chemical composition of FeGe alloys in VCA
(filled markers). Here, the micromagnetic parameters A and
D were obtained as described in Sec. III B by means of the
KKR method, using the GGA lattice parameters and LDA
characterizing the magnetic interactions. As can be seen from
Figs. 8(a)-8(d), for small changes of the Fermi level, the
change of the parameters A, D, S, and A follows directly the
change of the d-band filling of the alloys in the VCA, in
agreement with the validity of the rigid-band approximation in
this regime. We find that a small change of the Fermi level by
—0.05 eV (40.05 eV) modifies the spin stiffness A by +2.7%
(—8.9%) and the spiralization D by —28.9% (+33.3%). As
a result, the period of the spin spiral changes drastically by
+44.5% (—31.7%). The spin moment in Fig. 8(c) exhibits a
linear change of the magnetic moments with band filling as
expected from the Slater-Pauling curve.

We evaluate the Fermi-level dependence of the micromag-
netic DM parameter also based on the Berry phase approach
[see solid line in Fig. 8(b)], which agrees well with our KKR
results. The obtained variation of the spiralization, mimick-
ing the effect of doping, follows excellently recent theoret-
ical and experimental reports for Fe,_,Mn,Ge [15-17,40]
and Fe;_,Co,Ge [34] alloys, for which the DM interaction
changes sign at x ~ 0.2 and x ~ 0.4, respectively, leading to
a divergence of the spin-spiral pitch, as shown in Fig. 8(d).
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FIG. 8. (a) Spin stiffness A, (b) spiralization D, (c) magnetic
moment of Fe atoms S, and (d) period of the spin spirals A, as
function of the band occupation (occ.) mediated by the Fermi en-
ergy shift §Er (open markers and bottom axis), and as function
of the chemical composition x to Fe,_,Mn,Ge and Fe,_,Co,Ge
compounds computed in the VCA (filled markers and top axis). Spin
stiffness and spiralization are computed in accordance to Egs. (5) and
(6), respectively. J;; and D;; were obtained by using the KKR method
within LDA. The solid black line in (b) is the spiralization computed
by utilizing a Berry phase approach (FLEUR, LDA).

While the techniques and computer codes used in this work
are substantially different, we find a good agreement between
the results.

VI. CONCLUSIONS

In conclusion, we carried out a comprehensive state-of-the-
art DFT study of the magnetic properties of the prototypical
B20 chiral magnet FeGe. Using different electronic-structure
methods, we determined and investigated both atomistic and
micromagnetic parameters describing the exchange and DM
interactions. They provide a consistent picture: In the absence
of an external magnetic field and the neglect of the magnetic
anisotropy conceived to be tiny due to cubic symmetry of
the lattice, the ground state is found to be a helical spin
texture following the same handedness as the crystal struc-
ture with a period of A = (1450 £ 100) A obtained from the
ratio of exchange spin stiffness and spiralization. While the
handedness of the calculated spin spiral is consistent with
experiment [15-17,34,40], the pitch is about twice as large
as for all reported measurements. In retrospect, this finding is
consistent with previous theoretical studies on the magnetic
properties of cubic FeGe, although the discrepancy of a factor
2 between theory and experiment was not further addressed in
earlier work.

While we consider the experimentally determined pe-
riod of FeGe as a hard experimental fact, confirmed by

different experimental groups having taken different samples
and having measured over a wide temperature range, the large
discrepancy to the DFT results comes to a surprise considering
(i) the predictive power of DFT on the pitch of DMI stabilized
spin-spiral states proven for previous systems, like for a Mn
monolayer on W(110) [84] to name one, and (ii) that the struc-
tural parameters obtained by total energy minimization, the
local magnetic moment of Fe, as well as the Curie temperature
Tc = (310 £ 10) K agree well with experiments irrespective
of the computational approach applied.

To deeper understand the origin of this discrepancy, we
explored the response of the period with respect to compu-
tational parameters like the sampling of the BZ and the broad-
ening of the Fermi distribution, structural details like lattice
parameter and atomic positions, and the approximation of the
exact exchange-correlation functional employing LDA, GGA,
and LDA+4U. We demonstrated that increasing the lattice
parameter by 1%, by simultaneously reducing the distance
between the nearest Fe and Ge atoms by the same percentage
results in a ~8% reduction of the spin-spiral length. By
reducing the strength of the vector portion of the exchange
correlation (by the factor ) or by applying the Hubbard-
U correction to Ge p orbitals, we were able to show that
computed magnetic moment of Fe atoms (of 1.16 g in GGA)
can be tuned toward better agreement with the experimental
value (of ~1 up). However, such a treatment of the exchange
correlation functional increases the length of the spin spiral
(by ~5% if U =1.5eVandJ =0.5eVorifa = 0.95%). In
addition, we found that a small change of the electronic band
filling around the Fermi level has a relatively strong influence
on period of the spin spiral, which, for instance, becomes 32%
shorter (74% longer) when 3% of Fe are substituted by Co
(Mn). Although the computational, structural, and correlation
parameters and methods have a definite influence on the spin
stiffness and spiralization of the B20 magnet FeGe, their
effects are not sufficient to restore the experimental period of
magnetic modulations in this compound, finally concluding
that none of these parameters provide a convincing source
for the failure of the DFT calculations. Since Fe in FeGe
has a large magnetic moment of about 1 up, longitudinal
fluctuations neglected in this work can be excluded as possible
source of error.

We suspect that the failure of DFT as a predictive tool has a
more fundamental reason. We conjecture that the well-known
and well-accepted micromagnetic relation between the spin
stiffness A, the spiralization D, and the period X of the helical
structure A = 4w |A/D| is not valid for FeGe. We speculate
that it is not valid for any of the chiral B20 magnets. We
consider the presence of higher-order magnetic interactions,
such as the biquadratic, four-spin—three-site, four-spin—four-
site exchange [85], or the recently proposed topological-chiral
interactions [86] as potentially relevant contributions that
might violate the simple relation between the period and the
micromagnetic parameters. A second possible reason for the
remaining discrepancy roots in the fact that the ground state of
FeGe could be a superposition of several helical spin-density
waves propagating in the same direction but having different
phases and different directions of the rotation axes [14,87].

Finally, we would like to encourage new experiments
where all three quantities, the period A, the spin stiffness A,
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and the spiralization D, are measured independently under the
same experimental conditions in order to verify or falsify the
commonly accepted micromagnetic relation A = 4w |A/D].
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