000867543 001__ 867543
000867543 005__ 20210130003753.0
000867543 0247_ $$2doi$$a10.1039/C9SC03816G
000867543 0247_ $$2ISSN$$a2041-6520
000867543 0247_ $$2ISSN$$a2041-6539
000867543 0247_ $$2Handle$$a2128/23548
000867543 0247_ $$2altmetric$$aaltmetric:67112945
000867543 0247_ $$2WOS$$aWOS:000497283300017
000867543 037__ $$aFZJ-2019-06166
000867543 082__ $$a540
000867543 1001_ $$0P:(DE-Juel1)174385$$aZhang, Li-Chuan$$b0
000867543 245__ $$aTwo-dimensional magnetic metal–organic frameworks with the Shastry-Sutherland lattice
000867543 260__ $$aCambridge$$bRSC$$c2019
000867543 3367_ $$2DRIVER$$aarticle
000867543 3367_ $$2DataCite$$aOutput Types/Journal article
000867543 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582034528_32444
000867543 3367_ $$2BibTeX$$aARTICLE
000867543 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867543 3367_ $$00$$2EndNote$$aJournal Article
000867543 520__ $$aInspired by the successful synthesis of Fe/Cu-5,5′-bis(4-pyridyl)(2,2′-bipirimidine) (PBP), a family of two-dimensional (2D) metal–organic frameworks (MOFs) with the Shastry-Sutherland lattice, i.e., transition metal (TM)-PBP (TM = Cr, Mn, Fe, Co, Ni, Cu, Zn) has been systematically investigated by means of first-principles density functional theory calculations and Monte Carlo simulations. Mn-PBP is discovered to be the first ferromagnetic 2D MOF with the Shastry-Sutherland lattice and the Curie temperature is predicted to be about 105 K, while Fe-PBP, TM-PBP (TM = Cr, Co, Ni) and TM-PBP (TM = Cu, Zn) are found to be stripe-order antiferromagnetic, magnetic-dimerized and nonmagnetic, respectively. The electronic structure calculations reveal that TM-PBP MOFs are semiconductors with band gaps ranging from 0.12 eV to 0.85 eV, which could be easily modulated by various methods. Particularly, Mn-PBP would exhibit half-metallic behavior under compressive strain or appropriate electron/hole doping and a Mn-PBP based spintronic device has been proposed. This study not only improves the understanding of the geometric, electronic and magnetic properties of the 2D TM-PBP MOF family, but also provides a novel spin lattice playground for the research of 2D magnetic systems, which has diverse modulating possibilities and rich potential applications.
000867543 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000867543 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000867543 588__ $$aDataset connected to CrossRef
000867543 7001_ $$00000-0001-9838-8178$$aZhang, Lizhi$$b1
000867543 7001_ $$00000-0001-6770-1096$$aQin, Guangzhao$$b2
000867543 7001_ $$0P:(DE-HGF)0$$aZheng, Qing-Rong$$b3
000867543 7001_ $$0P:(DE-HGF)0$$aHu, Ming$$b4
000867543 7001_ $$0P:(DE-HGF)0$$aYan, Qing-Bo$$b5$$eCorresponding author
000867543 7001_ $$0P:(DE-HGF)0$$aSu, Gang$$b6$$eCorresponding author
000867543 773__ $$0PERI:(DE-600)2559110-1$$a10.1039/C9SC03816G$$gVol. 10, no. 44, p. 10381 - 10387$$n44$$p10381 - 10387$$tChemical science$$v10$$x2041-6539$$y2019
000867543 8564_ $$uhttps://juser.fz-juelich.de/record/867543/files/c9sc03816g.pdf$$yOpenAccess
000867543 8564_ $$uhttps://juser.fz-juelich.de/record/867543/files/c9sc03816g.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000867543 909CO $$ooai:juser.fz-juelich.de:867543$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867543 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174385$$aForschungszentrum Jülich$$b0$$kFZJ
000867543 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000867543 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000867543 9141_ $$y2019
000867543 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867543 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM SCI : 2017
000867543 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000867543 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000867543 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867543 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867543 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867543 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000867543 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000867543 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM SCI : 2017
000867543 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000867543 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867543 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867543 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000867543 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867543 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000867543 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867543 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000867543 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000867543 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000867543 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000867543 980__ $$ajournal
000867543 980__ $$aVDB
000867543 980__ $$aI:(DE-Juel1)IAS-1-20090406
000867543 980__ $$aI:(DE-Juel1)PGI-1-20110106
000867543 980__ $$aI:(DE-82)080009_20140620
000867543 980__ $$aI:(DE-82)080012_20140620
000867543 980__ $$aUNRESTRICTED
000867543 9801_ $$aFullTexts