001     867554
005     20240711085639.0
024 7 _ |a 10.1103/PhysRevApplied.12.024016
|2 doi
024 7 _ |a 2128/23949
|2 Handle
024 7 _ |a WOS:000479195400003
|2 WOS
037 _ _ |a FZJ-2019-06177
082 _ _ |a 530
100 1 _ |a Novko, Dino
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Nonadiabatic Effects in Raman Spectra of Al Cl 4 − -graphite Based Batteries
260 _ _ |a College Park, Md. [u.a.]
|c 2019
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1579534006_30848
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Raman spectroscopy is one of the most valuable experimental techniques for quality assessment and structural characterization of sample materials. As such, it has been applied to understand the mechanism of the staging of anions and cations into graphite-based electrodes in a variety of energy storage devices such as Al batteries, dual-ion cells, and Li-ion batteries. However, the correlation between the Raman peaks and intercalation stages is still unclear in most of these systems. This is due to the fact that the modeling of electron-phonon coupling in highly doped graphite systems is beyond the standard Born-Oppenheimer approximation. Here, we simulate the Raman peaks for AlCl−4-intercalated graphite in Al batteries by using a nonadiabatic coupling theory. Specifically, we successfully correlate the Raman peaks of the G phonon in AlCl−4-doped graphite with experiment for intercalation stages 1, 2, and 4, while stage 3 appears to be absent. Stages 1 and 2 have not been observed in experimental XRD patterns. We therefore believe that the AlCl−4-graphite intercalation compound has a core-shell structure with a maximum stage of 4 or 3 in the core and 2 or 1 in the shell. In addition, the observed intense narrow Raman bands for the Al-ion battery cathode are due to the high level of graphite doping and are explained in terms of low electron-phonon decay rates.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhang, Qian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kaghazchi, Payam
|0 P:(DE-Juel1)174502
|b 2
|e Corresponding author
773 _ _ |a 10.1103/PhysRevApplied.12.024016
|g Vol. 12, no. 2, p. 024016
|0 PERI:(DE-600)2760310-6
|n 2
|p 024016
|t Physical review applied
|v 12
|y 2019
|x 2331-7019
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/867554/files/Nonadiabatic_effects-1.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/867554/files/PhysRevApplied.12.024016-1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/867554/files/Nonadiabatic_effects-1.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/867554/files/PhysRevApplied.12.024016-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:867554
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)174502
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21