000867573 001__ 867573
000867573 005__ 20210130003803.0
000867573 0247_ $$2doi$$a10.1021/acsanm.9b00510
000867573 0247_ $$2WOS$$aWOS:000469410000068
000867573 037__ $$aFZJ-2019-06196
000867573 082__ $$a540
000867573 1001_ $$00000-0002-1335-1067$$aSchmutzler, Tilo$$b0
000867573 245__ $$an -Hexanol Enhances the Cetyltrimethylammonium Bromide Stabilization of Small Gold Nanoparticles and Promotes the Growth of Gold Nanorods
000867573 260__ $$aWashington, DC$$bACS Publications$$c2019
000867573 3367_ $$2DRIVER$$aarticle
000867573 3367_ $$2DataCite$$aOutput Types/Journal article
000867573 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1586004996_29485
000867573 3367_ $$2BibTeX$$aARTICLE
000867573 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867573 3367_ $$00$$2EndNote$$aJournal Article
000867573 520__ $$aGold nanorods (AuNRs) are of interest for many applications, since their absorption in the regime of visible light can easily be tuned by their exact shape. To produce these AuNRs, a two-step synthesis that starts from small seed particles is used. These seed particles are stabilized by cetyltrimethylammonium bromide (CTAB), which forms micelles at the used concentration (0.1 mol/L). In this work, the influence of the micelle morphology on the stabilization of these seed particles and the consequences on the formation of AuNRs is reported. The elongation of CTAB micelles by the addition of n-hexanol leads to much more stable seed particle dispersions and thus less polydisperse AuNRs. In contrast, a higher number of micelles compared to pure CTAB dispersions result from the addition of n-pentanol. This promotes the formation of larger seed particles and leads to lower yields of AuNRs. The gold nanoparticles are characterized by UV–vis–NIR absorption spectroscopy, transmission electron microscopy, and small-angle X-ray scattering (SAXS). The morphology of the micelles has been determined by a combination of SAXS and small-angle neutron scattering (SANS). The experimental results were used to calculate the collision kinetics of seed particles by using an improved approach of classical coagulation theory to consider the anisotropy of the micelles. The combination of these experiments with the calculations strongly supports the mechanistic model—that these gold seed particles are not stabilized by a CTAB bilayer but by the micelles itself. For the first time, the influence of the micellar size and shape on the stabilization mechanism of noble metal nanoparticles could be clarified. Theses findings contribute to the development of targeted design routes for distinct nanoparticle morphologies by the use of suitable dispersions.
000867573 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000867573 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000867573 588__ $$aDataset connected to CrossRef
000867573 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000867573 65027 $$0V:(DE-MLZ)SciArea-150$$2V:(DE-HGF)$$aIndustrial Application$$x1
000867573 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x2
000867573 65017 $$0V:(DE-MLZ)GC-1603-2016$$2V:(DE-HGF)$$aChemical Reactions and Advanced Materials$$x0
000867573 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000867573 7001_ $$0P:(DE-HGF)0$$aSchindler, Torben$$b1
000867573 7001_ $$0P:(DE-HGF)0$$aZech, Tobias$$b2
000867573 7001_ $$0P:(DE-HGF)0$$aLages, Sebastian$$b3
000867573 7001_ $$0P:(DE-HGF)0$$aThoma, Martin$$b4
000867573 7001_ $$0P:(DE-Juel1)130507$$aAppavou, Marie-Sousai$$b5$$ufzj
000867573 7001_ $$00000-0002-2847-107X$$aPeukert, Wolfgang$$b6
000867573 7001_ $$0P:(DE-HGF)0$$aSpiecker, Erdmann$$b7
000867573 7001_ $$0P:(DE-HGF)0$$aUnruh, Tobias$$b8$$eCorresponding author
000867573 773__ $$0PERI:(DE-600)2916552-0$$a10.1021/acsanm.9b00510$$gVol. 2, no. 5, p. 3206 - 3219$$n5$$p3206 - 3219$$tACS applied nano materials$$v2$$x2574-0970$$y2019
000867573 8564_ $$uhttps://juser.fz-juelich.de/record/867573/files/acsanm.9b00510.pdf$$yRestricted
000867573 8564_ $$uhttps://juser.fz-juelich.de/record/867573/files/acsanm.9b00510.pdf?subformat=pdfa$$xpdfa$$yRestricted
000867573 909CO $$ooai:juser.fz-juelich.de:867573$$pVDB$$pVDB:MLZ
000867573 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000867573 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b2$$kExtern
000867573 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b3$$kExtern
000867573 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b4$$kExtern
000867573 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130507$$aForschungszentrum Jülich$$b5$$kFZJ
000867573 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b7$$kExtern
000867573 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b8$$kExtern
000867573 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000867573 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000867573 9141_ $$y2019
000867573 920__ $$lyes
000867573 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000867573 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000867573 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000867573 980__ $$ajournal
000867573 980__ $$aVDB
000867573 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000867573 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000867573 980__ $$aI:(DE-588b)4597118-3
000867573 980__ $$aUNRESTRICTED