000867577 001__ 867577
000867577 005__ 20210130003804.0
000867577 0247_ $$2doi$$a10.1016/j.colsurfb.2019.06.036
000867577 0247_ $$2ISSN$$a0927-7765
000867577 0247_ $$2ISSN$$a1873-4367
000867577 0247_ $$2pmid$$apmid:31254745
000867577 0247_ $$2WOS$$aWOS:000481565300098
000867577 037__ $$aFZJ-2019-06200
000867577 082__ $$a540
000867577 1001_ $$0P:(DE-HGF)0$$aKanwar, Rohini$$b0
000867577 245__ $$aExperimental validation of biocompatible nanostructured lipid carriers of sophorolipid: Optimization, characterization and in-vitro evaluation
000867577 260__ $$a[S.l.]$$bScience Direct$$c2019
000867577 3367_ $$2DRIVER$$aarticle
000867577 3367_ $$2DataCite$$aOutput Types/Journal article
000867577 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1586004920_29483
000867577 3367_ $$2BibTeX$$aARTICLE
000867577 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867577 3367_ $$00$$2EndNote$$aJournal Article
000867577 520__ $$aTo date, the potential of sophorolipids (an important class of glycolipids) has been exploited solely as amphipathic molecules but their ability to formulate lipid nanoparticles has never been explored. In this report, for the first time, lipid nanostructures coated with polysorbates (Tweens) were formulated by a hot dispersion method. By varying the amount of lipid, type of surfactant, and alcohol, dilution ratio etc., the formulation was optimized with respect to its stability, which is a central aspect of their potential applications. Their comprehensive physicochemical characterization was done using static and dynamic light scattering (SLS, DLS), small angle neutron scattering (SANS), zeta-potential, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. Further hemolysis study was conducted to understand the in-vitro cytotoxicity levels of the lipidic nanoparticles prior to its application as a potent drug delivery device for countermanding the problems associated with challenging tuberculosis and leprosy drug-Rifampicin. Attaining high entrapment efficiency and sustained release from the developed carrier, further interaction with bovine serum albumin was investigated, to understand the in-vivo behavior of the nanostructured lipid carriers (NLCs).
000867577 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000867577 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000867577 588__ $$aDataset connected to CrossRef
000867577 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000867577 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000867577 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000867577 7001_ $$00000-0002-7262-7115$$aGradzielski, Michael$$b1$$eCorresponding author
000867577 7001_ $$00000-0002-6008-1987$$aPrevost, Sylvain$$b2
000867577 7001_ $$0P:(DE-Juel1)130507$$aAppavou, Marie-Sousai$$b3$$ufzj
000867577 7001_ $$00000-0002-7140-6900$$aMehta, S. K.$$b4$$eCorresponding author
000867577 773__ $$0PERI:(DE-600)1500523-9$$a10.1016/j.colsurfb.2019.06.036$$gVol. 181, p. 845 - 855$$p845 - 855$$tColloids and surfaces / B Biointerfaces B$$v181$$x0927-7765$$y2019
000867577 909CO $$ooai:juser.fz-juelich.de:867577$$pVDB$$pVDB:MLZ
000867577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130507$$aForschungszentrum Jülich$$b3$$kFZJ
000867577 9101_ $$0I:(DE-HGF)0$$60000-0002-7140-6900$$aExternal Institute$$b4$$kExtern
000867577 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000867577 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000867577 9141_ $$y2019
000867577 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867577 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867577 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOLLOID SURFACE B : 2017
000867577 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867577 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867577 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867577 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867577 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867577 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867577 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867577 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000867577 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867577 920__ $$lyes
000867577 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000867577 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000867577 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000867577 980__ $$ajournal
000867577 980__ $$aVDB
000867577 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000867577 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000867577 980__ $$aI:(DE-588b)4597118-3
000867577 980__ $$aUNRESTRICTED