000867579 001__ 867579
000867579 005__ 20210130003805.0
000867579 0247_ $$2doi$$a10.1021/acs.langmuir.9b00944
000867579 0247_ $$2ISSN$$a0743-7463
000867579 0247_ $$2ISSN$$a1520-5827
000867579 0247_ $$2pmid$$apmid:31547660
000867579 0247_ $$2WOS$$aWOS:000492800800008
000867579 037__ $$aFZJ-2019-06202
000867579 082__ $$a540
000867579 1001_ $$00000-0003-0669-7139$$aSchuldes, Isabel$$b0
000867579 245__ $$aInternal Structure of Nanometer-Sized Droplets Prepared by Antisolvent Precipitation
000867579 260__ $$aWashington, DC$$bACS Publ.$$c2019
000867579 3367_ $$2DRIVER$$aarticle
000867579 3367_ $$2DataCite$$aOutput Types/Journal article
000867579 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1586004376_29485
000867579 3367_ $$2BibTeX$$aARTICLE
000867579 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867579 3367_ $$00$$2EndNote$$aJournal Article
000867579 520__ $$aAntisolvent precipitation (AP) is a low-cost and less-invasive preparation alternative for organic nanoparticles compared to top-down methods such as high-pressure homogenization or milling. Here we report on particularly small organic nanoparticles (NPs) prepared by AP. It has been found for various materials that these NPs in their liquid state exhibit a significant degree of molecular order at their interface toward the dispersion medium including ubiquinones (coenzyme Q10), triglycerides (trimyristin, tripalmitin), and alkanes (tetracosane). This finding is independent of the use of a stabilizer in the formulation. While this is obviously a quite general interfacial structuring effect, the respective structural details of specific NPs systems might differ. Here, a detailed structural characterization of very small liquid coenzyme Q10 (Q10) NPs is presented as a particular example for this phenomenon. The Q10 NPs have been prepared by AP in the presence of two different stabilizers, sodium dodecyl sulfate (SDS) and pentaethylene glycol monododecyl ether (C12E5), respectively, and without any stabilizer. The NPs’ size is initially analyzed by photon correlation spectroscopy (PCS). The SDS-stabilized Q10 NPs have been studied further by differential scanning calorimetry (DSC), small-angle X-ray and neutron scattering (SAXS, SANS), wide-angle X-ray scattering (WAXS), and cryogenic transmission electron microscopy (CryoTEM). A simultaneous analysis of SAXS and contrast variation SANS studies revealed the molecular arrangement within the interface between the NPs and the dispersion medium. The Q10 NPs stabilized by SDS and C12E5, respectively, are small (down to 19.9 nm) and stable (for at least 16 months) even when no stabilizer is used. The SDS-stabilized Q10 NPs reported here, are therewith, to the best of our knowledge, the smallest organic NPs which have been reported to be prepared by AP so far. In particular, these NPs exhibit a core–shell structure consisting of an amorphous Q10 core and a surrounding shell, which is mainly composed of oriented Q10 molecules and aligned SDS molecules. This structure suggests a significant amphiphilic behavior and a rather unexpected stabilizing role of Q10 molecules.
000867579 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000867579 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000867579 588__ $$aDataset connected to CrossRef
000867579 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000867579 65027 $$0V:(DE-MLZ)SciArea-150$$2V:(DE-HGF)$$aIndustrial Application$$x1
000867579 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x2
000867579 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000867579 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000867579 7001_ $$0P:(DE-HGF)0$$aNoll, Dennis M.$$b1
000867579 7001_ $$0P:(DE-HGF)0$$aSchindler, Torben$$b2
000867579 7001_ $$0P:(DE-HGF)0$$aZech, Tobias$$b3
000867579 7001_ $$0P:(DE-HGF)0$$aGötz, Klaus$$b4
000867579 7001_ $$0P:(DE-Juel1)130507$$aAppavou, Marie-Sousai$$b5$$ufzj
000867579 7001_ $$0P:(DE-HGF)0$$aBoesecke, Peter$$b6
000867579 7001_ $$0P:(DE-HGF)0$$aSteiniger, Frank$$b7
000867579 7001_ $$0P:(DE-HGF)0$$aSchulz, Peter S.$$b8
000867579 7001_ $$0P:(DE-HGF)0$$aUnruh, Tobias$$b9$$eCorresponding author
000867579 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.9b00944$$gVol. 35, no. 42, p. 13578 - 13587$$n42$$p13578 - 13587$$tLangmuir$$v35$$x1520-5827$$y2019
000867579 8564_ $$uhttps://juser.fz-juelich.de/record/867579/files/acs.langmuir.9b00944.pdf$$yRestricted
000867579 8564_ $$uhttps://juser.fz-juelich.de/record/867579/files/acs.langmuir.9b00944.pdf?subformat=pdfa$$xpdfa$$yRestricted
000867579 909CO $$ooai:juser.fz-juelich.de:867579$$pVDB$$pVDB:MLZ
000867579 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130507$$aForschungszentrum Jülich$$b5$$kFZJ
000867579 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000867579 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000867579 9141_ $$y2019
000867579 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000867579 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867579 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867579 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867579 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2017
000867579 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000867579 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000867579 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867579 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867579 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867579 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867579 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867579 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867579 920__ $$lyes
000867579 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000867579 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000867579 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000867579 980__ $$ajournal
000867579 980__ $$aVDB
000867579 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000867579 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000867579 980__ $$aI:(DE-588b)4597118-3
000867579 980__ $$aUNRESTRICTED