000867594 001__ 867594
000867594 005__ 20250701125909.0
000867594 0247_ $$2doi$$a10.1002/fuce.201800191
000867594 0247_ $$2ISSN$$a1615-6846
000867594 0247_ $$2ISSN$$a1615-6854
000867594 0247_ $$2WOS$$aWOS:000474062000001
000867594 037__ $$aFZJ-2019-06215
000867594 082__ $$a620
000867594 1001_ $$0P:(DE-Juel1)133667$$aGross-Barsnick, S.-M.$$b0$$eCorresponding author$$ufzj
000867594 245__ $$aInteraction of a Barium-Calcium-Silicate Glass Composite Sealant with Sanergy HT 441
000867594 260__ $$aWeinheim$$bWiley-VCH$$c2019
000867594 3367_ $$2DRIVER$$aarticle
000867594 3367_ $$2DataCite$$aOutput Types/Journal article
000867594 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575537936_7072
000867594 3367_ $$2BibTeX$$aARTICLE
000867594 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867594 3367_ $$00$$2EndNote$$aJournal Article
000867594 520__ $$aThe interaction between Sandvik's coated Sanergy HT 441 (EN 1.4509) with a cerium‐cobalt layer as chromium evaporation barrier and a glass‐ceramic composite sealant on the basis of BaO‐CaO‐SiO2 was investigated in this study. The oxidation behavior of the steel was analyzed by long‐term weight change measurements of strip samples at 800 °C for 10,000 h followed by scanning electron microscopy on cross‐sectioned samples. A double oxide layer was formed consisting of chromia close to the steel and a layer with 18 wt.% Cr, 11% Co, 10% Mn to the air side. The interface of the joined samples had a reaction layer similar to the oxidized steel surface with an additional phase formation consisting of Co/Mn/Fe and low in oxygen facing the glass‐ceramic interface. After these preliminary tests the coated Sanergy HT 441 was integrated as frames into a four layered F10‐stack with 80 cm2 cell area and was tested for 3,500 h at operation temperature of 700 °C and 0.5 A cm−2 constant current mode followed by 20 thermal cycles between 700 and 200 °C. The stack had shown similar performance and gas‐tightness compared to stacks assembled with Crofer 22 APU. The post‐test characterization had shown adhesive fracture patterns when dismantling the stack parts.
000867594 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000867594 588__ $$aDataset connected to CrossRef
000867594 7001_ $$0P:(DE-Juel1)157695$$aMargaritis, N.$$b1$$ufzj
000867594 7001_ $$0P:(DE-Juel1)129897$$ade Haart, U.$$b2$$ufzj
000867594 7001_ $$0P:(DE-Juel1)129727$$aHuczkowski, P.$$b3$$ufzj
000867594 7001_ $$0P:(DE-Juel1)129782$$aQuadakkers, W. J.$$b4$$ufzj
000867594 773__ $$0PERI:(DE-600)2054621-X$$a10.1002/fuce.201800191$$gVol. 19, no. 4, p. 494 - 502$$n4$$p494 - 502$$tFuel cells$$v19$$x1615-6846$$y2019
000867594 8564_ $$uhttps://juser.fz-juelich.de/record/867594/files/Gross-Barsnick_et_al-2019-Fuel_Cells.pdf$$yRestricted
000867594 8564_ $$uhttps://juser.fz-juelich.de/record/867594/files/Gross-Barsnick_et_al-2019-Fuel_Cells.pdf?subformat=pdfa$$xpdfa$$yRestricted
000867594 909CO $$ooai:juser.fz-juelich.de:867594$$pVDB
000867594 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133667$$aForschungszentrum Jülich$$b0$$kFZJ
000867594 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157695$$aForschungszentrum Jülich$$b1$$kFZJ
000867594 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129897$$aForschungszentrum Jülich$$b2$$kFZJ
000867594 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129727$$aForschungszentrum Jülich$$b3$$kFZJ
000867594 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129782$$aForschungszentrum Jülich$$b4$$kFZJ
000867594 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000867594 9141_ $$y2019
000867594 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867594 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867594 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUEL CELLS : 2017
000867594 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867594 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867594 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867594 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867594 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000867594 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000867594 9201_ $$0I:(DE-Juel1)ZEA-1-20090406$$kZEA-1$$lZentralinstitut für Technologie$$x1
000867594 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x2
000867594 980__ $$ajournal
000867594 980__ $$aVDB
000867594 980__ $$aI:(DE-Juel1)IEK-2-20101013
000867594 980__ $$aI:(DE-Juel1)ZEA-1-20090406
000867594 980__ $$aI:(DE-Juel1)IEK-3-20101013
000867594 980__ $$aUNRESTRICTED
000867594 981__ $$aI:(DE-Juel1)ITE-20250108
000867594 981__ $$aI:(DE-Juel1)IMD-1-20101013
000867594 981__ $$aI:(DE-Juel1)ICE-2-20101013