000867609 001__ 867609
000867609 005__ 20210130003816.0
000867609 0247_ $$2doi$$a10.1021/acs.jpclett.9b00906
000867609 0247_ $$2Handle$$a2128/23569
000867609 0247_ $$2altmetric$$aaltmetric:57819418
000867609 0247_ $$2pmid$$apmid:31117678
000867609 0247_ $$2WOS$$aWOS:000471079400069
000867609 037__ $$aFZJ-2019-06230
000867609 082__ $$a530
000867609 1001_ $$00000-0002-0378-6729$$aZhou, Xiaodong$$b0
000867609 245__ $$aFully Spin-Polarized Nodal Loop Semimetals in Alkaline Metal Monochalcogenide Monolayers
000867609 260__ $$aWashington, DC$$bACS$$c2019
000867609 3367_ $$2DRIVER$$aarticle
000867609 3367_ $$2DataCite$$aOutput Types/Journal article
000867609 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581413892_29861
000867609 3367_ $$2BibTeX$$aARTICLE
000867609 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000867609 3367_ $$00$$2EndNote$$aJournal Article
000867609 520__ $$aTopological semimetals in ferromagnetic materials have attracted an enormous amount of attention due to potential applications in spintronics. Using first-principles density functional theory together with an effective lattice model, here we present a new family of topological semimetals with a fully spin-polarized nodal loop in alkaline metal monochalcogenide MX (M = Li, Na, K, Rb, or Cs; X = S, Se, or Te) monolayers. The half-metallic ferromagnetism can be established in MX monolayers, in which one nodal loop formed by two crossing bands with the same spin components is found at the Fermi energy. This nodal loop half-metal survives even when considering the spin–orbit coupling owing to the symmetry protection provided by the Mz mirror plane. The quantum anomalous Hall state and Weyl-like semimetal in this system can be also achieved by rotating the spin from the out-of-plane to the in-plane direction. The MX monolayers hosting rich topological phases thus offer an excellent platform for realizing advanced spintronic concepts.
000867609 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000867609 536__ $$0G:(DE-Juel1)jiff40_20090701$$aTopological transport in real materials from ab initio (jiff40_20090701)$$cjiff40_20090701$$fTopological transport in real materials from ab initio$$x1
000867609 588__ $$aDataset connected to CrossRef
000867609 7001_ $$0P:(DE-HGF)0$$aZhang, Run-Wu$$b1
000867609 7001_ $$0P:(DE-HGF)0$$aZhang, Zeying$$b2
000867609 7001_ $$0P:(DE-HGF)0$$aMa, Da-Shuai$$b3
000867609 7001_ $$0P:(DE-Juel1)172699$$aFeng, Wanxiang$$b4$$eCorresponding author
000867609 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b5$$eCorresponding author
000867609 7001_ $$0P:(DE-HGF)0$$aYao, Yugui$$b6$$eCorresponding author
000867609 773__ $$0PERI:(DE-600)2522838-9$$a10.1021/acs.jpclett.9b00906$$gVol. 10, no. 11, p. 3101 - 3108$$n11$$p3101 - 3108$$tThe journal of physical chemistry letters$$v10$$x1948-7185$$y2019
000867609 8564_ $$uhttps://juser.fz-juelich.de/record/867609/files/acs.jpclett.9b00906.pdf$$yRestricted
000867609 8564_ $$uhttps://juser.fz-juelich.de/record/867609/files/1903.11025.pdf$$yPublished on 2019-05-22. Available in OpenAccess from 2020-05-22.
000867609 8564_ $$uhttps://juser.fz-juelich.de/record/867609/files/acs.jpclett.9b00906.pdf?subformat=pdfa$$xpdfa$$yRestricted
000867609 8564_ $$uhttps://juser.fz-juelich.de/record/867609/files/1903.11025.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-05-22. Available in OpenAccess from 2020-05-22.
000867609 909CO $$ooai:juser.fz-juelich.de:867609$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000867609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172699$$aForschungszentrum Jülich$$b4$$kFZJ
000867609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b5$$kFZJ
000867609 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000867609 9141_ $$y2019
000867609 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000867609 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000867609 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM LETT : 2017
000867609 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ PHYS CHEM LETT : 2017
000867609 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000867609 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000867609 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000867609 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000867609 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000867609 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000867609 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000867609 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000867609 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000867609 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000867609 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000867609 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x4
000867609 980__ $$ajournal
000867609 980__ $$aVDB
000867609 980__ $$aI:(DE-Juel1)IAS-1-20090406
000867609 980__ $$aI:(DE-Juel1)PGI-1-20110106
000867609 980__ $$aI:(DE-82)080009_20140620
000867609 980__ $$aI:(DE-82)080012_20140620
000867609 980__ $$aI:(DE-Juel1)JSC-20090406
000867609 980__ $$aUNRESTRICTED
000867609 9801_ $$aFullTexts