001     867609
005     20210130003816.0
024 7 _ |a 10.1021/acs.jpclett.9b00906
|2 doi
024 7 _ |a 2128/23569
|2 Handle
024 7 _ |a altmetric:57819418
|2 altmetric
024 7 _ |a pmid:31117678
|2 pmid
024 7 _ |a WOS:000471079400069
|2 WOS
037 _ _ |a FZJ-2019-06230
082 _ _ |a 530
100 1 _ |a Zhou, Xiaodong
|0 0000-0002-0378-6729
|b 0
245 _ _ |a Fully Spin-Polarized Nodal Loop Semimetals in Alkaline Metal Monochalcogenide Monolayers
260 _ _ |a Washington, DC
|c 2019
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581413892_29861
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Topological semimetals in ferromagnetic materials have attracted an enormous amount of attention due to potential applications in spintronics. Using first-principles density functional theory together with an effective lattice model, here we present a new family of topological semimetals with a fully spin-polarized nodal loop in alkaline metal monochalcogenide MX (M = Li, Na, K, Rb, or Cs; X = S, Se, or Te) monolayers. The half-metallic ferromagnetism can be established in MX monolayers, in which one nodal loop formed by two crossing bands with the same spin components is found at the Fermi energy. This nodal loop half-metal survives even when considering the spin–orbit coupling owing to the symmetry protection provided by the Mz mirror plane. The quantum anomalous Hall state and Weyl-like semimetal in this system can be also achieved by rotating the spin from the out-of-plane to the in-plane direction. The MX monolayers hosting rich topological phases thus offer an excellent platform for realizing advanced spintronic concepts.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a Topological transport in real materials from ab initio (jiff40_20090701)
|0 G:(DE-Juel1)jiff40_20090701
|c jiff40_20090701
|f Topological transport in real materials from ab initio
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhang, Run-Wu
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhang, Zeying
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ma, Da-Shuai
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Feng, Wanxiang
|0 P:(DE-Juel1)172699
|b 4
|e Corresponding author
700 1 _ |a Mokrousov, Yuriy
|0 P:(DE-Juel1)130848
|b 5
|e Corresponding author
700 1 _ |a Yao, Yugui
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1021/acs.jpclett.9b00906
|g Vol. 10, no. 11, p. 3101 - 3108
|0 PERI:(DE-600)2522838-9
|n 11
|p 3101 - 3108
|t The journal of physical chemistry letters
|v 10
|y 2019
|x 1948-7185
856 4 _ |u https://juser.fz-juelich.de/record/867609/files/acs.jpclett.9b00906.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/867609/files/1903.11025.pdf
|y Published on 2019-05-22. Available in OpenAccess from 2020-05-22.
856 4 _ |u https://juser.fz-juelich.de/record/867609/files/acs.jpclett.9b00906.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/867609/files/1903.11025.pdf?subformat=pdfa
|x pdfa
|y Published on 2019-05-22. Available in OpenAccess from 2020-05-22.
909 C O |o oai:juser.fz-juelich.de:867609
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172699
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130848
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM LETT : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J PHYS CHEM LETT : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21